Understanding the sensing mechanism of carbon nanoparticles: MnO2–PVP composites sensors using in situ FTIR—online LCR meter in the detection of ethanol and methanol vapor

  • Goitsione E. Olifant
  • Vuyo Mavumengwana
  • Ivo A. Hümmelgen
  • Messai A. MamoEmail author


An in situ FTIR combined with online LCR method was used to study the sensing mechanism of the prepared sensors at room temperature. Our study revealed that the sensing mechanism for the sensors that were responsive was a total decomposition of the analytes, ethanol and methanol, through a total oxidation process. Carbon nanoparticles (CNPs; candle soot), manganese dioxide and polyvinylpyrrolidone (PVP) were used as sensing materials to fabricate five various sensors for the detection of ethanol and methanol vapor in a closed chamber. Different sensors were prepared by mixing variable ratio of the sensing materials. Sensor A was prepared by mixing all three sensing materials; CNPs:MnO2:PVP (1:1:3 mass ratio) in dichloromethane (as a solvent), while sensor B, C, D and E were prepared by mixing two of the materials; CNPs:MnO2 (1:1 mass ratio), MnO2:PVP (1:3 mass ratio), CNPs:PVP (1:3 mass ratio) and MnO2 (only), respectively. The sensing materials were characterized using Brunauer–Emmett–Teller, X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The sensing experiments were carried out at room temperature, for both ethanol and methanol vapor and the concentrations were varied from 345 to 4146 and 498 to 5983 ppm, respectively. Sensor C was the most sensitive sensor to ethanol with the sensitivity of 0.195 Ω ppm−1 and sensor D was the most sensitive for methanol with a sensitivity of 0.389 Ω ppm−1.



The authors are grateful to DST-CSIR South Africa for the financial support. DST-NRF Centre of Excellence in Strong Materials (CoE-SM) and Centre for Nanomaterials Science Research and University of Johannesburg. IAH thanks CNPq for research grant and finally, we have no conflicts of interest to disclose.

Author contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript. All authors contributed equally.

Supplementary material

10854_2018_633_MOESM1_ESM.docx (7.2 mb)
Supplementary material 1 (DOCX 7397 KB)


  1. 1.
    X. Liu, S. Cheng, H. Liu, S. Hu, D. Zhang, H. Ning, Sensors 12, 9635 (2012)CrossRefGoogle Scholar
  2. 2.
    Z. Li, J. Yi. Sens. Actuators B 243, 96 (2017)CrossRefGoogle Scholar
  3. 3.
    L.A. Patil, L.S. Sonawane, D.G. Patil, J. Mod. Phys. 2, 1215 (2011)CrossRefGoogle Scholar
  4. 4.
    J. Tang, J. Fang, Y. Liang, B. Zhang, Y. Luo, X. Liu, Z. Li, X. Cai, J. Xian, H. Lin, W. Zhu, Sens. Actuators B 273, 1816 (2018)CrossRefGoogle Scholar
  5. 5.
    A. Mirzaei, S.G. Leonardi, G. Neri, Ceram. Int. 42, 15119 (2016)CrossRefGoogle Scholar
  6. 6.
    A.W. Boots, J.J. van Berkel, J.W. Dallinga, A. Smolinska, E.F. Wouters, F.J. van Schooten, J. Breath Res. 6, 1 (2012)CrossRefGoogle Scholar
  7. 7.
    T.Y. Tiong, C.F. Dee, A.A. Hamzah, B.Y. Majlis, S.A. Rahman, Sens. Actuators B 202, 1322 (2014)CrossRefGoogle Scholar
  8. 8.
    C. Tasaltin, F. Basarir, Sens. Actuators B 194, 173 (2014)CrossRefGoogle Scholar
  9. 9.
    M. Narjinary, P. Rana, A. Sen, M. Pal, Mater. Des. 115, 158 (2017)CrossRefGoogle Scholar
  10. 10.
    T. Sarkar, P.M. Ashraf, S. Srinives, A. Mulchandani, Sens. Actuators B 268, 115 (2018)CrossRefGoogle Scholar
  11. 11.
    L. Liu, D. Zhang, Q. Zhang, X. Chen, G. Xu, Y. Lu, Q. Liu, Biosens. Bioelectron. 93, 94 (2017)CrossRefGoogle Scholar
  12. 12.
    B.B. Cunha, M.W. Greenshields, M.A. Mamo, N.J. Coville, I.A. Hümmelgen, J. Mater. Sci. Mater. Electron. 26, 4198 (2015)CrossRefGoogle Scholar
  13. 13.
    Y. Wang, L. Jiang, Y. Wang, Electrochim. Acta 210, 190 (2016)CrossRefGoogle Scholar
  14. 14.
    L.E. Murr, K.F. Soto, Mater. Charact. 55, 50, (2015)CrossRefGoogle Scholar
  15. 15.
    R.R. Attarde, D.R. Patil, Int. J. Phys. Appl. Sci. 3, 31 (2016)Google Scholar
  16. 16.
    L. Khoshrooa, A. Hosseinzadehb, M. Sobhani-Nasabc, H. Rahimi-Nasrabadid, Ehrlichf, J. Electroanal. Chem. 823, 61 (2018)CrossRefGoogle Scholar
  17. 17.
    S. Pourmasoud, A. Sobhani-Nasab, M. Behpour, M. Rahimi-Nasrabadi, F. Ahmadi, ‎J. Mol. Struct. 1157, 607 (2018)CrossRefGoogle Scholar
  18. 18.
    W. Zhang, C. Zeng, M. Kong, Y. Pan, Z. Yang, Sens. Actuators B 162, 292 (2012)CrossRefGoogle Scholar
  19. 19.
    Z. Ma, T. Zhao, Electrochim. Acta 201, 165 (2016)CrossRefGoogle Scholar
  20. 20.
    H. Liu, Z. Hu, Y. Su, H. Ruan, R. Hu, L. Zhang, Appl. Surf. Sci. 392, 777 (2017)CrossRefGoogle Scholar
  21. 21.
    C. Liu, S.T. Navale, Z.B. Yang, M. Galluzzi, V.B. Patil, P.J. Cao, R.S. Mane, F.J. Stadler, J. Alloys Compd. 727, 362 (2017)CrossRefGoogle Scholar
  22. 22.
    H.D. Zhang, X. Yan, Z.H. Zhang, G.F. Yu, W.P. Han, J.C. Zhang, Y.Z. Long, Int. J. Polym. Sci., 2016, 1 (2016)Google Scholar
  23. 23.
    H. Bai, G. Shi, Sensors 7, 267 (2007)CrossRefGoogle Scholar
  24. 24.
    M.M. Aria, A. Irajizad, F.R. Astaraei, S.P. Shariatpanahi, R. Sarvari, Measurement 78, 283 (2016)CrossRefGoogle Scholar
  25. 25.
    A. Sidek, R. Arsat, X. He, K. Kalantar-Zadeh, W. Wlodarski, Int. Conf. IEEE 2012, 1 (2012)Google Scholar
  26. 26.
    L.C. Wang, L. He, Q. Liu, Y.M. Liu, M. Chen, Y. Cao, H.Y. He, K.N. Fan, Appl. Catal. 344, 150 (2008)CrossRefGoogle Scholar
  27. 27.
    C.J. Raj, B.C. Kim, B. Cho, W. Cho, S. Kim, S.Y. Park, K.H. Yu, Mater. Sci. 93, 241 (2016)Google Scholar
  28. 28.
    E.D. Dikio, Int. J. Electrochem. Sci. 6, 2214 (2011)Google Scholar
  29. 29.
    K. Ramya, J. John, B. Manoj, Int. J. Electrochem. Sci. 8, 9421 (2013)Google Scholar
  30. 30.
    G. Cabello, R.A. Davoglio, Appl. Catal B., 218, 192 (2017)CrossRefGoogle Scholar
  31. 31.
    A. Bello, O.O. Fashedemi, M. Fabiane, J.N. Lekitima, K.I. Ozoemena, N. Manyala, Electrochim. Acta 114, 48 (2013)CrossRefGoogle Scholar
  32. 32.
    X. Bai, X. Tong, Y. Gao, W. Zhu, C. Fu, J. Ma, T. Tan, C. Wang, Y. Luo, H. Sun, Electrochim. Acta 281, 525 (2018)CrossRefGoogle Scholar
  33. 33.
    X. Wang, Y. Li, Chem. Commun. (2002). Google Scholar
  34. 34.
    M.A. Hossain, S. Islam, Am. J. Nanosci. Nanotechnol. 1, 52 (2013)CrossRefGoogle Scholar
  35. 35.
    S.S. Mothoa, Doctoral Thesis, 2010, University of the Western Cape, South AfricaGoogle Scholar
  36. 36.
    Q. Ma, J. Wang, X. Dong, W. Yu, G. Liu, Chem. Eng. J. 222, 16 (2013)CrossRefGoogle Scholar
  37. 37.
    H.M. Zidan, E.M. Abdelrazek, A.M. Abdelghany, A.E. Tarabiah, J. Mater. Res. Technol. (2018). Google Scholar
  38. 38.
    Y. Ying, D. Liu, Fuel 205, 109 (2017)CrossRefGoogle Scholar
  39. 39.
    P.V. Gnaneshwar, P. Sabarikirishwaran, Int J Chemtech 7, 1465 (2015)Google Scholar
  40. 40.
    J. Deng, B. Yu, Z. Lou, L. Wang, R. Wang, T. Zhang, Sens. Actuators B 184, 21 (2013)CrossRefGoogle Scholar
  41. 41.
    L.A. Horsfall, D.C. Pugh, C.S. Blackman, I.P. Parkin, J. Mater. Chem. A 5, 2172 (2017)CrossRefGoogle Scholar
  42. 42.
    L.M. Madeira, M.F. Portela, Catal. Rev.-Sci. Eng. 44, 247 (2002)CrossRefGoogle Scholar
  43. 43.
    N. Barsan, U. Weimar, J. Electroceram. 7, 143 (2001)CrossRefGoogle Scholar
  44. 44.
    F. Hellegouarc’h, F. Arefi-Khonsari, R. Planade, J. Amououx, Sens. Actuators B 73, 27 (2001)CrossRefGoogle Scholar
  45. 45.
    R.S. Khadayate, R.B. Waghulde, M.G. Wankhede, J.V. Sali, P.P. Patil, Bull. Mater. Sci. 30, 129 (2007)CrossRefGoogle Scholar
  46. 46.
    C.K. Tan, D.J. Blackwood, Sens. Actuators B 71, 184 (2000)CrossRefGoogle Scholar
  47. 47.
    K. Hirayama, Y. Sakai, K. Kameoka, K. Noda, R. Naganawa, Sens. Actuators B 86, 20 (2002)CrossRefGoogle Scholar
  48. 48.
    H. Bai, G. Shi, Sensors 7(3), 267 (2007)CrossRefGoogle Scholar
  49. 49.
    J. Zhang, A. Boyd, A. Tselev, M. Paranjape, P. Barbara, Appl. Phys. Lett. 88(1), 123112 (2006)CrossRefGoogle Scholar
  50. 50.
    J. Zhang, X. Liu, R. Blume, A.H. Zhang, R. Schlögl, D.S. Su, Science 322, 73 (2008)CrossRefGoogle Scholar
  51. 51.
    F. Atamny, J. Bloecker, A. Duebotzky, H. Kurt, O. Timpe, O.G. Loose, W. Mahdi, R. Schlögl, Mol. Phys. 76, 851 (1992)CrossRefGoogle Scholar
  52. 52.
    D. Fu, H. Lim, Y. Shi, X. Dong, J. Phys. Chem. C 112, 650 (2008)CrossRefGoogle Scholar
  53. 53.
    P.J. Hart, F.J. Vastola, P.L. Walker Jr., Carbon 5, 363 (1967)CrossRefGoogle Scholar
  54. 54.
    K. Isokoski, C.A. Poteet, H. Linnartz, Astron. Astrophys. 555, 1 (2013)CrossRefGoogle Scholar
  55. 55.
    T. Schädle, B. Pejcic, B. Mizaikoff, Methods 8, 756 (2016)Google Scholar
  56. 56.
    P.J. Innocenzi, Solids 316, 309 (2003)Google Scholar
  57. 57.
    B.M. Matin, Y. Mortazavi, A.A. Khodadadi, A. Abbasi, A.A. Firooz, Sens. Actuators B 151, 140 (2010)CrossRefGoogle Scholar
  58. 58.
    P.G. Collins, Oxford Handbook of Nanoscience and Technology vol. 2 (Oxford University Press, Oxford, 2009), pp. 156Google Scholar
  59. 59.
    H.L. Chiang, P.C. Chiang, C. Chiang, E.E. Chang, Chemosphere 38, 2733 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Applied ChemistryUniversity of JohannesburgJohannesburgSouth Africa
  2. 2.DST-NRF Centre of Excellence in Strong Materials (CoE-SM)JohannesburgSouth Africa
  3. 3.Department of BiotechnologyUniversity of JohannesburgJohannesburgSouth Africa
  4. 4.Departamento de FísicaUniversidade Federal do ParanáCuritibaBrazil

Personalised recommendations