Advertisement

In-situ green synthesis of CuO on 3D submicron-porous/solid copper current collectors as excellent supercapacitor electrode material

  • Xiaohui SuEmail author
  • Guangwen Feng
  • Lin Yu
  • Qiong Li
  • Huanhua Zhang
  • Wei Song
  • Guanghui HuEmail author
Article
  • 31 Downloads

Abstract

Nanostructured Cu oxides hold great promise as electrode materials for supercapacitors due to their low cost, high theoretical capacitance (1800 F g−1), as well as superior environmental benignity. In this work, hybrid three-dimensional (3D) network and flower-like structure CuO nanoparticles in situ grow on a 3D submicron-porous/solid copper current collector (S/SPCu) via a simple hydrothermal method using H2O2. Benefited from this unique hybrid porous architecture, the as-prepared CuO/S/SPCu electrode shows a high specific capacitance of 445 F g−1 at 2 mA cm−2, high rate capability (60.7% at 64 mA cm−2) and good cycling stability (82.8% capacitance retention after 2000 cycles). The high performance hybrid structure makes the environment-friendly and low-cost CuO/S/SPCu electrode a promising electrode material for supercapacitor applications.

Notes

Acknowledgements

This work was supported by Natural Science Foundation of China (2160309).

References

  1. 1.
    W. Wei, X. Cui, W. Chen, D.G. Ivey, Chem. Soc. Rev. 40, 1697–1721 (2011)CrossRefGoogle Scholar
  2. 2.
    G. Wang, L. Zhang, J. Zhang, Chem. Soc. Rev. 41, 797–828 (2012)CrossRefGoogle Scholar
  3. 3.
    R.S. Kate, S.A. Khalate, R.J. Deokate, J. Alloy. Compd. 734, 89–111 (2018)CrossRefGoogle Scholar
  4. 4.
    Q. Rong, L.-L. Long, X. Zhang, Y.-X. Huang, H.-Q. Yu, Appl. Energy 153, 63–69 (2015)CrossRefGoogle Scholar
  5. 5.
    Y. Dai, S. Zhu, Y. Cong, Y. Zeng, Y. Gao, T. Zhang, C. Wang, J. Mater. Sci. - Mater. Electron. 29:14574–14581 (2018)CrossRefGoogle Scholar
  6. 6.
    K. Malaie, M.R. Ganjali, T. Alizadeh, P. Norouzi, J. Mater. Sci. - Mater. Electron. 28:14631–14637 (2017)CrossRefGoogle Scholar
  7. 7.
    Y. Huang, F. Cui, Y. Zhao, J. Lian, J. Bao, H. Li, J. Alloy. Compd. 753, 176–185 (2018)CrossRefGoogle Scholar
  8. 8.
    E. Samuel, H.S. Jo, B. Joshi, H.G. Park, Y.I. Kim, S. An, M.T. Swihart, J.M. Yun, K.H. Kim, S.S. Yoon, Appl. Surf. Sci. 423, 210–218 (2017)CrossRefGoogle Scholar
  9. 9.
    J.-G. Wang, H. Liu, H. Sun, W. Hua, H. Wang, X. Liu, B. Wei, Carbon 127, 85–92 (2018)CrossRefGoogle Scholar
  10. 10.
    J.-G. Wang, H. Liu, X. Zhang, X. Li, X. Liu, F. Kang, Small 14, 1703950 (2018)CrossRefGoogle Scholar
  11. 11.
    J.-G. Wang, H. Liu, X. Zhang, M. Shao, B. Wei, J. Mater. Chem. A 6, 17653–17661 (2018)CrossRefGoogle Scholar
  12. 12.
    J.-G. Wang, F. Kang, B. Wei, Prog. Mater Sci. 74, 51–124 (2015)CrossRefGoogle Scholar
  13. 13.
    J.-G. Wang, Z. Zhang, X. Zhang, X. Yin, X. Li, X. Liu, F. Kang, B. Wei, Nano Energy 39, 647–653 (2017)CrossRefGoogle Scholar
  14. 14.
    J.-G. Wang, H. Liu, H. Liu, W. Hua, M. Shao, ACS Appl. Mater. Interfaces 10, 18816–18823 (2018)CrossRefGoogle Scholar
  15. 15.
    A. Boisset, L. Athouël, J. Jacquemin, P. Porion, T. Brousse, M. Anouti, J. Phys. Chem. C 117, 7408–7422 (2013)CrossRefGoogle Scholar
  16. 16.
    J. Cai, C. Wu, Y. Zhu, K. Zhang, P.K. Shen, J. Power Sources 341, 165–174 (2017)CrossRefGoogle Scholar
  17. 17.
    Y. Li, J. Xu, T. Feng, Q. Yao, J. Xie, H. Xia, Adv. Funct. Mater. 27, 1606728 (2017)CrossRefGoogle Scholar
  18. 18.
    T. Liu, C. Jiang, B. Cheng, W. You, J. Yu, J. Power Sources 359, 371–378 (2017)CrossRefGoogle Scholar
  19. 19.
    H. Lv, X. Gao, Q. Xu, H. Liu, Y.-G. Wang, Y. Xia, ACS Appl. Mater. Inter. 9, 40394–40403 (2017)CrossRefGoogle Scholar
  20. 20.
    H. Wang, J. Lu, S. Yao, W. Zhang, J. Alloy. Compd. 744, 187–195 (2018)CrossRefGoogle Scholar
  21. 21.
    J. Zhao, X. Zhang, M. Li, S. Lu, ,P. Yang, CrystEngComm. 18, 8020–8029 (2016)CrossRefGoogle Scholar
  22. 22.
    Y. Yang, D. Kim, M. Yang, P. Schmuki, Chem. Commun. 47, 7746–7748 (2011)CrossRefGoogle Scholar
  23. 23.
    G. Wang, J. Huang, S. Chen, Y. Gao, D. Cao, J. Power Sources 196, 5756–5760 (2011)CrossRefGoogle Scholar
  24. 24.
    P. Xu, K. Ye, M. Du, J. Liu, K. Cheng, J. Yin et al., RSC Adv. 5, 36656–36664 (2015)CrossRefGoogle Scholar
  25. 25.
    W. Xu, S. Dai, G. Liu, Y. Xi, C. Hu, X. Wang, Electrochim. Acta 203, 1–8 (2016)CrossRefGoogle Scholar
  26. 26.
    L. Yu, Y. Jin, L. Li, J. Ma, G. Wang, B. Geng et al., CrystEngComm. 15, 7657–7662 (2013)CrossRefGoogle Scholar
  27. 27.
    F. Yang, X. Zhang, Y. Yang, S. Hao, L. Cui, Chem. Phys. Lett. 691, 366–372 (2018)CrossRefGoogle Scholar
  28. 28.
    D.P. Dubal, G.S. Gund, R. Holze, C.D. Lokhande, J. Power Sources 242, 687–698 (2013)CrossRefGoogle Scholar
  29. 29.
    Y. Liu, X. Cao, D. Jiang, D. Jia, J. Liu, J. Mater. Chem. A 6, 10474–10483 (2018)CrossRefGoogle Scholar
  30. 30.
    S. Dolai, R. Dey, S. Das, S. Hussain, R. Bhar, A.K. Pal, J. Alloy. Compd. 724, 456–464 (2017)CrossRefGoogle Scholar
  31. 31.
    E. Proniewicz, S. Vantasin, T.K. Olszewski, B. Boduszek, Y. Ozaki, Phys. Chem. Chem. Phys. 19, 31842–31855 (2017)CrossRefGoogle Scholar
  32. 32.
    M.-J. Deng, C.-C. Wang, P.-J. Ho, C.-M. Lin, J.-M. Chen, K.-T. Lu, J. Mater. Chem. A 2, 12857–12865 (2014)CrossRefGoogle Scholar
  33. 33.
    D. He, J. Wan, H. Suo, C. Zhao, Mater. Lett. 185, 165–168 (2016)CrossRefGoogle Scholar
  34. 34.
    D. He, S. Xing, B. Sun, H. Cai, H. Suo, C. Zhao, Electrochim. Acta 210, 639–645 (2016)CrossRefGoogle Scholar
  35. 35.
    H. Yu Liu, X. Huang, Peng, Electrochim. Acta 104, 289–294 (2013)CrossRefGoogle Scholar
  36. 36.
    Y. Li, S. Chang, X. Liu, J. Huang, J. Yin, G. Wang, D. Cao, Electrochim. Acta 85, 393–398 (2012)CrossRefGoogle Scholar
  37. 37.
    X. Zhang, L. Yu, L. Wang, R. Ji, G. Wang, B. Geng, Phys. Chem. Chem. Phys. 15, 521–525 (2013)CrossRefGoogle Scholar
  38. 38.
    A. Pendashteh, M.F. Mousavi, M.S. Rahmanifar, Electrochim. Acta 88, 347–357 (2013)CrossRefGoogle Scholar
  39. 39.
    Y. Liu, H. Huang, X. Peng, Electrochim. Acta 104, 289–294 (2013)CrossRefGoogle Scholar
  40. 40.
    M.B. Gholivand, H. Heydari, A. Abdolmaleki, H. Hosseini, Mat. Sci. Semicon. Proc. 30, 157–161 (2015)CrossRefGoogle Scholar
  41. 41.
    Y. Li, K. Ye, K. Cheng, D. Cao, Y. Pan, S. Kong, X. Zhang, G. Wang, J. Electroanal. Chem. 727, 154–162 (2014)CrossRefGoogle Scholar
  42. 42.
    X. Su, L. Yu, G. Cheng, H. Zhang, M. Sun, X. Zhang, Appl. Energy 153, 94–100 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Chemical Engineering and Light IndustryGuangdong University of TechnologyGuangzhouChina

Personalised recommendations