Physical and optical properties of sprayed Cu2ZnSnS4 (CZTS) thin film: effect of Cu concentration

  • R. J. DeokateEmail author
  • R. S. Kate
  • S. C. Bulakhe


The crystallographic microstructural and optical properties of CZTS thin film have been investigated with influence of copper concentration in spray solution. The X-ray and Raman study carried out to the prepared CZTS thin films and attained pure kesterite phase. The results of microstructural properties such as crystallite size, d-spacing, microstrain, texture coefficient and standard deviation investigated. The prepared CZTS thin film shows very high optical absorption of the order of 105 cm−1 in the visible region and the optical band gap energy varied between 1.45 and 1.47 eV. This optical band gap tuning is most applicable for solar cells. By using the Wemple–DiDomenico (WDD) single oscillator model, the optical parameters were calculated such as single oscillator energy (E0), dispersion energy (Ed), static refractive index (n0), etc. Large values of optical conductivity (σ) give the promise to the solar cell application.



Authors are wishing thanks to the Science and Engineering Research Board, Department of Science and Technology (SERB/DST), New Delhi, India for their financial assistance through the fast track project (SB/FTP/PS-079/2014) titled “Fabrication of efficient Cu2ZnSnS4 (CZTS) thin film solar cells using economical Spray Pyrolysis”.


  1. 1.
    C. Waida, A. Alivisatos, D. Kammen, Material availability expands the opportunity for large-scale photovoltaic development. Environ. Sci. Technol. 43, 2072–2077 (2009)CrossRefGoogle Scholar
  2. 2.
    M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, Solar cell efficiency tables (version 42). Prog. Photovolt. 21, 827–837 (2013)CrossRefGoogle Scholar
  3. 3.
    G. Larramona, S. Bourdais, A. Jacob, C. Chone, T. Muto, Y. Cuccaro, B. Delatouche, C. Moisan, D. Pere, G. Dennler, 8.6% Efficient CZTSSe solar cells sprayed from water–ethanol CZTS colloidal solutions. J. Phys. Chem. Lett. 5, 3763–3767 (2014)CrossRefGoogle Scholar
  4. 4.
    Q. Guo, S.J. Kim, M. Kar, W.N. Shafarman, R.W. Birkmire, E.A. Stach, R. Agrawal, H.W. Hillhouse, Development of CuInSe2 nanocrystal and nanoring inks for low-cost solar cells. Nano Lett. 8, 2982–2987 (2008)CrossRefGoogle Scholar
  5. 5.
    H. Katagiri, K. Jimbo, W.S. Maw, K. Oishi, M. Yamazaki, H. Araki, A. Takeuchi, Development of CZTS-based thin film solar cells. Thin Solid Films 517, 2455–2460 (2009)CrossRefGoogle Scholar
  6. 6.
    J.J. Scragg, T. Ericson, T. Kubart, M. Edoff, C. Platzer-Björkman, Chemical insights into the instability of Cu2ZnSnS4 films during annealing. Chem. Mater. 23, 4625–4633 (2011)CrossRefGoogle Scholar
  7. 7.
    T. Washio, T. Shinji, S. Tajima, T. Fukano, T. Motohiro, K. Jimbo, H. Katagiri, 6% Efficiency Cu2ZnSnS4-based thin film solar cells using oxide precursors by open atmosphere type CVD. J. Mater. Chem. 22, 4021–4024 (2012)CrossRefGoogle Scholar
  8. 8.
    N. Kunihiko Tanaka, H. Moritake, Uchiki, Preparation of Cu2ZnSnS4 thin films by sulfurizing sol–gel deposited precursors. Sol. Energy Mater. Sol. Cells 91, 1199–1201 (2007)CrossRefGoogle Scholar
  9. 9.
    K. Woo, Y. Kim, J. Moon, A non-toxic, solution-processed, earth abundant absorbing layer for thin-film solar cells. Energy Environ. Sci. 5, 5340–5345 (2012)CrossRefGoogle Scholar
  10. 10.
    H. Zhou, H. Duan, W. Yang, Q. Chen, C. Hsu, W. Hsu, C. Chen, Y. Yang, Facile single-component precursor for Cu2ZnSnS4 with enhanced phase and composition controllability. Energy Environ. Sci. 7, 998–1005 (2014)CrossRefGoogle Scholar
  11. 11.
    S. Ahmed, K.B. Reuter, O. Gunawan, L. Guo, L.T. Romankiw, H. Deligianni, A high efficiency electrodeposited Cu2ZnSnS4 solar cell. Adv. Energy Mater. 2, 253–259 (2012)CrossRefGoogle Scholar
  12. 12.
    F. Jiang, S. Ikeda, T. Harada, M. Matsumura, Pure sulfide Cu2ZnSnS4 thin film solar cells fabricated by preheating an electrodeposited metallic stack. Adv. Energy Mater. 4, 1301381 (2014)CrossRefGoogle Scholar
  13. 13.
    S.A. Khalate, R.S. Kate, J.H. Kim, S.M. Pawar, R.J. Deokate, Effect of deposition temperature on the properties of Cu2ZnSnS4 (CZTS) thin films. Superlattices Microstruct. 103, 335–342 (2017)CrossRefGoogle Scholar
  14. 14.
    T.H. Nguyen, W. Septina, S. Fujikawa, F. Jiang, T. Harada, S. Ikeda, Cu2ZnSnS4 thin film solar cells with 5.8% of conversion efficiency obtained by a facile spray pyrolysis technique. RSC Adv. 5, 77565–77571 (2015)CrossRefGoogle Scholar
  15. 15.
    B. Dhruba, J.H. Khadka, Kim, Structural transition and band gap tuning of Cu2(Zn,Fe)SnS4 chalcogenide for photovoltaic application. J. Phys. Chem. C 118, 14227–14237 (2014)CrossRefGoogle Scholar
  16. 16.
    E.M. Mkawi, K. Ibrahim, M.K.M. Ali, A.S. Mohamed, Dependence of copper concentration on the properties of Cu2ZnSnS4 thin films prepared by electrochemical method. Int. J. Electrochem. Sci. 8, 359–368 (2013)Google Scholar
  17. 17.
    S.M. Bhosale, M.P. Suryawanshi, J.H. Kim, A.V. Moholkar, Influence of copper concentration on sprayed CZTS thin films deposited at high temperature. Ceram. Int. 41(7), 8299–8304 (2015)CrossRefGoogle Scholar
  18. 18.
    Y.B.K. Kumar, G.S. Babu, P.U. Bhaskar, V.S. Raja, Preparation and characterization of spray-deposited Cu2ZnSnS4 thin films. Sol. Energy Mater. Sol. Cells 93, 1230–1237 (2009)CrossRefGoogle Scholar
  19. 19.
    S.M. Camara, L. Wang, X. Zhang, Easy hydrothermal preparation of Cu2ZnSnS4 (CZTS) nanoparticles for solar cell application. Nanotechnology 24, 495401 (2013)CrossRefGoogle Scholar
  20. 20.
    M. Law, M.C. Beard, S. Choi, J.M. Luther, M.C. Hanna, A.J. Nozik, Determining the internal quantum efficiency of PbSe nanocrystal solar cells with the aid of an optical model. Nano Lett. 8, 3904–3910 (2008)CrossRefGoogle Scholar
  21. 21.
    S.G. Choi, H.Y. Zhao, C. Persson, C.L. Perkins, A.L. Donohue, B. To, A.G. Norman, J. Li, I.L. Repins, Dielectric function spectra and critical-point energies of Cu2ZnSnSe4 from 0.5 to 9.0 eV. J. Appl. Phys. 111, 033506 (2012)CrossRefGoogle Scholar
  22. 22.
    JCPDS # 26-0575Google Scholar
  23. 23.
    E. G.Turgut, S. F.Keskenler.Aydin, S.Dogan, S.Duman, S.Özcelik, B. Gürbulakand, B. Esen, Fabrication and characterization of Al/Cu2ZnSnS4/n-Si/Al heterojunction photodiodes. Phys. Status Solidi A 211, 580–586 (2014)CrossRefGoogle Scholar
  24. 24.
    A. Moses Ezhil Raj, K.C. Lalithambika, V.S. Vidhya, G. Rajagopal, A. Thayumanavan, M. Jayachandran, C. Sanjeeviraja, Optical properties of Er3+/Yb3+ codoped transparent PLZT ceramic. Phys. B: Condensed Matter 403, 44–49 (2008)CrossRefGoogle Scholar
  25. 25.
    J. He, L. Sun, K. Zhang, W. Wang, J. Jiang, Y. Chen, P. Yang, J. Chu, Effect of post-sulfurization on the composition, structure and optical properties of Cu2ZnSnS4 thin films deposited by sputtering from a single quaternary target. Appl. Surf. Sci. 264, 133–138 (2013)CrossRefGoogle Scholar
  26. 26.
    B.D. Cullity, Elements of X-ray Diffraction (Addison-Wesley, Palo Alto, 1956)Google Scholar
  27. 27.
    K.L. Chopra, T.F. Phenomena, Thin Flim Phenomena (McGraw-Hill, New York, 1969), p. 270Google Scholar
  28. 28.
    T.Massalski C.Bareet, Structure of Metals (Pergaron Press, Oxford, 1980), p. 1923Google Scholar
  29. 29.
    C. Agashe, M. Takwale, B. Marathe, V. Bhide, Structural properties of SnO2: F films deposited by spray pyrolysis. Solar Energy Mater 17, 99–117 (1988)CrossRefGoogle Scholar
  30. 30.
    S.A. Khalate, R.S. Kate, H.M. Pathan, R.J. Deokate, Structural and electrochemical properties of spray deposited molybdenum trioxide (α-MoO3) thin films. J. Solid State Electrochem. 21, 2737–2746 (2017)CrossRefGoogle Scholar
  31. 31.
    R.M. Valls, T.S. Lyubenova, I.C. Roures, L. Oliveira, D.F. Chiva, J.B. Carda Castelló, Easy and low-cost aqueous precipitation method to obtain Cu2ZnSn(S, Se)4 thin layers. Solar Energy Mater. Solar Cells 161, 432–438 (2017)CrossRefGoogle Scholar
  32. 32.
    D.E. Milovzorov, A.M. Ali, T. Inokuma, Y. Kurata, T. Suzuki, S. Hasegawa, Optical properties of silicon nanocrystallites in polycrystalline silicon films prepared at low temperature by plasmaenhanced chemical vapor deposition. Thin Solid Films 382, 47–55 (2001)CrossRefGoogle Scholar
  33. 33.
    T.M. Wang, S.K. Zheng, W.C. Hao, C. Wang, Studies on photocatalytic activity and transmittance spectra of TiO2 thin films prepared by r.f. Magnetron Sputtering Method. Surf. Coat. Technol. 155, 141–145 (2002)CrossRefGoogle Scholar
  34. 34.
    N.A. Bakr, Z.T. Khodair, S.A. Hassan, Effect of substrate temperature on structural and optical properties of Cu2ZnSnS4 (CZTS) films prepared by chemical spray pyrolysis method. Res. J. Chem. Sci. 5(10), 51–61 (2015)Google Scholar
  35. 35.
    P. Kireev, La Physique des semiconducteurs (Mir, Moscou, 1975)Google Scholar
  36. 36.
    B.A. Schubert, B. Marsen, S. Cinque, T. Unold, R. Klenk, S. Schorr, H.W. Schock, Cu2ZnSnS4 thin film solar cells by fast coevaporation. Prog. Photovolt. Res. Appl. 19, 93–96 (2011)CrossRefGoogle Scholar
  37. 37.
    J.S. Seol, S.Y. Lee, J.C. Lee, H.D. Nam, K.H. Kim, Electrical and optical properties of Cu2ZnSnS4 thin films prepared by RF magnetron sputtering process. Sol. Energy Mater. Sol. Cells 75, 155–162 (2003)CrossRefGoogle Scholar
  38. 38.
    S.Y. Chen, A. Walsh, Y. Luo, J.H. Yang, X.G. Gong, S.H. Wei, Wurtzite-derived polytypes of kesterite and stannite quaternary chalcogenide semiconductors. Phys. Rev. B 82, 195203 (2010)CrossRefGoogle Scholar
  39. 39.
    F.J. Fan, L. Wu, M. Gong, G. Liu, Y.X. Wang, S.H. Yu, S. Chen, L.W. Wang, X.G. Gong, Composition- and band-gap-tunable synthesis of Wurtzite-derived Cu2ZnSn(S1–xSex)4 nanocrystals: theoretical and experimental insights. ACS Nano 7, 1454–1463 (2013)CrossRefGoogle Scholar
  40. 40.
    K.R. Nemade, S.A. Waghuley, Synthesis of MgO nanoparticles by solvent mixed spray pyrolysis technique for optical investigation. Int. J. Mater. (2014). Google Scholar
  41. 41.
    R.R. Reddy, M. Ravi Kumar, T.V.R. Rao, Studies on the opto-electronic properties of alkali halides from optical electromagnetivities. Infrared Phys. 34(1), 95–97 (1993)CrossRefGoogle Scholar
  42. 42.
    N.A. Bakr, Characterization of a CdZnTe/CdTe heterostructure system prepared by Zn diffusion into a CdTe thin film. J. Cryst. Growth 235(1), 217–223 (2002)CrossRefGoogle Scholar
  43. 43.
    S.H. Wemple, M. DiDomenico, Behavior of the electronic dielectric constant in covalent and ionic materials. Phys. Rev. B 3, 1338–1351 (1971)CrossRefGoogle Scholar
  44. 44.
    N.A. Subrahamanyam, A Textbook of Optics, 9th edn. (Brj Laboratory, India, 1977)Google Scholar
  45. 45.
    K.S. Usha, R. Sivakumar, C. Sanjeeviraja, Optical constants and dispersion energy parameters of NiO thin films prepared by radio frequency magnetron sputtering technique. J. Appl. Phys. 114, 123501 (2013)CrossRefGoogle Scholar
  46. 46.
    A. Paliwal, A. Sharma, M. Tomar, V. Gupta, Optical properties of WO3 thin films using surface plasmon resonance technique. J. Appl. Phys. 115, 043104 (2014)CrossRefGoogle Scholar
  47. 47.
    K. Punitha, R. Sivakumar, C. Sanjeeviraja, Pulsing frequency induced change in optical constants and dispersion energy parameters of WO3 films grown by pulsed direct current magnetron sputtering. J. Appl. Phys. 115, 2 (2014)CrossRefGoogle Scholar
  48. 48.
    C. Kittel, Introduction to Solid State Physics, 7th edn. (John Wiley & Sons Inc., Singapore, 1996), pp. 307–308Google Scholar
  49. 49.
    A. Goswami, Thin Film Fundamentals (New Age International (P) Ltd., New Delhi, 2006), p. 376Google Scholar
  50. 50.
    I.C. Ndukwe, Solution growth, characterization and applications of zinc sulphide thin films. Solar Energy Mater. Solar Cells 40, 123 (1996)CrossRefGoogle Scholar
  51. 51.
    B. Ouni, A. Boukhachem, S. Dabbous, A. Amlouk, K. Boubaker, M. Amlouk, Some transparent semi-conductor metal oxides: comparative investigations in terms of Wemple–DiDomenico parameters, mechanical performance and Amlouk–Boubaker opto-thermal expansivity. Mater. Sci. Semicond. Process. 13, 281–287 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Vidya Pratishthan’s, Arts, Science and Commerce CollegeBaramatiIndia

Personalised recommendations