Advertisement

Fullerene C60 doped polymeric nanocomposite coatings: moving solar spectra from ultraviolet to the deep red

  • S. M. El-Bashir
  • N. M. Alwadai
Article
  • 16 Downloads

Abstract

One of the main techniques in the state of the art of photovoltaic (PV) cells is their spectral loss towards the ultraviolet solar photons and the lack of absorption of infrared photons by PV cells. In this study, polymer nanocomposite luminescent down-shifting (LDS) films were prepared by doping fullerene C60 in polymethyl methacrylate (PMMA), polyvinyl acetate (PVAc) and PMMA/PVAc blend. The homogeneity and weathering stability of the films were characterized using AFM, FT-IR, UV–Vis absorption and fluorescence measurements. The influence of such coatings on the power conversion efficiency (PCE) of commercial PV cells was studied and showed the maximum percentage increase of the order of 15.72% and 19.23% for c-Si and GaAs PV cells. This result evinces that these LDS coatings represent a potential way to improve the efficiency of commercial PV cells.

Notes

Acknowledgements

This research project was supported by a grant from “The Research Center of the Female Scientific and Medical Colleges,” Deanship of Scientific Research, King Saud University.

References

  1. 1.
    G. Boyle, Renewable Energy (OXFORD University Press, Oxford, 2004)Google Scholar
  2. 2.
    T.B. Johansson, L. Burnham, Renewable Energy: Sources for Fuels and Electricity (Island Press, Washington DC, 1993)Google Scholar
  3. 3.
    N.S. Lewis, D.G. Nocera, Powering the planet: chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. 103, 15729–15735 (2006)CrossRefGoogle Scholar
  4. 4.
    C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrček, C. Del, I. Cañizo, Tobias, Modifying the solar spectrum to enhance silicon solar cell efficiency—an overview of available materials. Solar Energy Mater. Solar Cells, 91 (2007) 238–249CrossRefGoogle Scholar
  5. 5.
    W. Shockley, H.J. Queisser, Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32, 510–519 (1961)CrossRefGoogle Scholar
  6. 6.
    N.S. Lewis, Toward cost-effective solar energy use. Science, 315 (2007) 798–801CrossRefGoogle Scholar
  7. 7.
    G.W. Crabtree, N.S. Lewis, Solar energy conversion. Phys Today 60, 37–42 (2007)CrossRefGoogle Scholar
  8. 8.
    H. Hovel, R. Hodgson, J. Woodall, The effect of fluorescent wavelength shifting on solar cell spectral response. Sol. Energy Mater. 2, 19–29 (1979)CrossRefGoogle Scholar
  9. 9.
    H.S. Anizelli, V. Stoichkov, R.V. Fernandes, J.L. Duarte, E. Laureto, J. Kettle, I. Visoly-Fisher, E.A. Katz, Application of luminescence downshifting materials for enhanced stability of CH3NH3PbI3(1–x) Cl3x perovskite photovoltaic devices. Org. Electron. 49, 129–134 (2017)CrossRefGoogle Scholar
  10. 10.
    G. Griffini, F. Bella, F. Nisic, C. Dragonetti, D. Roberto, M. Levi, R. Bongiovanni, S. Turri, Multifunctional luminescent down-shifting fluoropolymer coatings: a straightforward strategy to improve the UV-light harvesting ability and long-term outdoor stability of organic dye-sensitized solar cells. Adv. Energy Mater. 5, 1401312 (2015)CrossRefGoogle Scholar
  11. 11.
    C. Huang, Y. Chen, W. Hung, T. Chen, K. Sun, W.L. Chang, Enhanced light harvesting of Si solar cells via luminescent down-shifting using YVO4: Bi3+, Eu3+ nanophosphors. Prog. Photovolt. Res. Appl. 21, 1507–1513 (2013)CrossRefGoogle Scholar
  12. 12.
    E. Klampaftis, D. Ross, K.R. McIntosh, B.S. Richards, Enhancing the performance of solar cells via luminescent down-shifting of the incident spectrum: a review. Sol. Energy Mater. Sol. Cells 93, 1182–1194 (2009)CrossRefGoogle Scholar
  13. 13.
    T. Maruyama, A. Enomoto, K. Shirasawa, Solar cell module colored with fluorescent plate. Sol. Energy Mater. Sol. Cells 64, 269–278 (2000)CrossRefGoogle Scholar
  14. 14.
    S. Marchionna, F. Meinardi, M. Acciarri, S. Binetti, A. Papagni, S. Pizzini, V. Malatesta, R. Tubino, Photovoltaic quantum efficiency enhancement by light harvesting of organo-lanthanide complexes. J. Lumin. 118, 325–329 (2006)CrossRefGoogle Scholar
  15. 15.
    F. Bella, G. Griffini, J.-P. Correa-Baena, G. Saracco, M. Grätzel, A. Hagfeldt, S. Turri, C. Gerbaldi, Improving efficiency and stability of perovskite solar cells with photocurable fluoropolymers. Science 354(6309), 203–206 (2016)CrossRefGoogle Scholar
  16. 16.
    B. McKenna, R.C. Evans, Towards efficient spectral converters through materials design for luminescent solar devices. Adv. Mater. 29, 1606491 (2017)CrossRefGoogle Scholar
  17. 17.
    K.R. McIntosh, B.S. Richards, Increased mc-Si module efficiency using fluorescent organic dyes: a ray-tracing study. Photovoltaic Energy Conversion, Conference Record of the 2006 IEEE 4th World Conference on, IEEE, 2006, pp. 2108–2111Google Scholar
  18. 18.
    F. Bella, G. Griffini, M. Gerosa, S. Turri, R. Bongiovanni, Performance and stability improvements for dye-sensitized solar cells in the presence of luminescent coatings. J. Power Sources 283, 195–203 (2015)CrossRefGoogle Scholar
  19. 19.
    D. Alonso-Álvarez, D. Ross, E. Klampaftis, K.R. McIntosh, S. Jia, P. Storiz, T. Stolz, B.S. Richards, Luminescent down-shifting experiment and modelling with multiple photovoltaic technologies. Prog. Photovolt. Res. Appl. 23, 479–497 (2015)CrossRefGoogle Scholar
  20. 20.
    M. de la Mora, O. Amelines-Sarria, B. Monroy, C. Hernández-Pérez, J. Lugo, Materials for downconversion in solar cells: perspectives and challenges. Sol. Energy Mater. Sol. Cells 165, 59–71 (2017)CrossRefGoogle Scholar
  21. 21.
    S.D. Hodgson, W.S. Brooks, A.J. Clayton, G. Kartopu, V. Barrioz, S.J. Irvine, Enhancing blue photoresponse in CdTe photovoltaics by luminescent down-shifting using semiconductor quantum dot/PMMA films. Nano Energy 2, 21–27 (2013)CrossRefGoogle Scholar
  22. 22.
    X. Pi, Q. Li, D. Li, D. Yang, Spin-coating silicon-quantum-dot ink to improve solar cell efficiency. Sol. Energy Mater. Sol. Cells 95, 2941–2945 (2011)CrossRefGoogle Scholar
  23. 23.
    M. Abdelaziz, Cerium (III) doping effects on optical and thermal properties of PVA films. Phys. B 406, 1300–1307 (2011)CrossRefGoogle Scholar
  24. 24.
    S. Kalytchuk, S. Gupta, O. Zhovtiuk, A. Vaneski, S.V. Kershaw, H. Fu, Z. Fan, E.C. Kwok, C.-F. Wang, W.Y. Teoh, Semiconductor nanocrystals as luminescent down-shifting layers to enhance the efficiency of thin-film CdTe/CdS and crystalline Si solar cells. J. Phys. Chem. C 118, 16393–16400 (2014)CrossRefGoogle Scholar
  25. 25.
    H.-J. Jeong, Y.-C. Kim, S.K. Lee, Y. Jeong, J.-W. Song, J.-H. Yun, J.-H. Jang, Ultrawide spectral response of CIGS solar cells integrated with luminescent down-shifting quantum dots. ACS Appl. Mater. Interfaces. 9, 25404–25411 (2017)CrossRefGoogle Scholar
  26. 26.
    U. Tronco-Jurado, E. Saucedo-Flores, R. Ruelas, R. López, M.E. Alvarez-Ramos, A.A. Ayón, Synergistic effects of nanotexturization and down shifting CdTe quantum dots in solar cell performance. Microsyst. Technol. 23, 3945–3953 (2017)CrossRefGoogle Scholar
  27. 27.
    A. Zazueta-Raynaud, R. Lopez-Delgado, J. Pelayo-Ceja, M. Alvarez-Ramos, A. Ayon, Utilization of down-shifting photoluminescent ZnO quantum dots on solar cells. Mater. Res. Exp. 4, 076203 (2017)CrossRefGoogle Scholar
  28. 28.
    J. Liu, K. Wang, W. Zheng, W. Huang, C.H. Li, X.Z. You, Improving spectral response of monocrystalline silicon photovoltaic modules using high efficient luminescent down-shifting Eu3+ complexes. Prog. Photovolt. Res. Appl. 21, 668–675 (2013)CrossRefGoogle Scholar
  29. 29.
    T. Fix, H. Rinnert, M. Blamire, A. Slaoui, J. MacManus-Driscoll, Nd:SrTiO3 thin films as photon downshifting layers for photovoltaics. Sol. Energy Mater. Sol. Cells 102, 71–74 (2012)CrossRefGoogle Scholar
  30. 30.
    Q. Li, J. Lin, J. Wu, Z. Lan, Y. Wang, F. Peng, M. Huang, Improving photovoltaic performance of dye-sensitized solar cell by downshift luminescence and p-doping effect of Gd2O3: Sm3+. J. Lumin. 134, 59–62 (2013)CrossRefGoogle Scholar
  31. 31.
    K. Kawano, K. Arai, H. Yamada, N. Hashimoto, R. Nakata, Application of rare-earth complexes for photovoltaic precursors. Sol. Energy Mater. Sol. Cells 48, 35–41 (1997)CrossRefGoogle Scholar
  32. 32.
    H. Lian, Z. Hou, M. Shang, D. Geng, Y. Zhang, J. Lin, Rare earth ions doped phosphors for improving efficiencies of solar cells. Energy 57, 270–283 (2013)CrossRefGoogle Scholar
  33. 33.
    H. Ahmed, J. Doran, S. McCormack, Increased short-circuit current density and external quantum efficiency of silicon and dye sensitised solar cells through plasmonic luminescent down-shifting layers. Sol. Energy 126, 146–155 (2016)CrossRefGoogle Scholar
  34. 34.
    J.-Y. Chen, C. Huang, W. Hung, K. Sun, T. Chen, Efficiency improvement of Si solar cells using metal-enhanced nanophosphor fluorescence. Sol. Energy Mater. Sol. Cells 120, 168–174 (2014)CrossRefGoogle Scholar
  35. 35.
    F.I. Chowdhury, A. Alnuaimi, S. Alkis, A.K. Okyay, M. Nayfeh, A. Nayfeh, ∼ 23% increase in efficiency of 100 nm thin film a-si solar cells using combination of Si/InN and Au nanoparticles, Photovoltaic Specialist Conference (PVSC), 2015 IEEE 42nd, IEEE, 2015, pp. 1–4Google Scholar
  36. 36.
    H. Ahmed, M. Rafiee, S. Chandra, A. Sethi, S. McCormack, Application of concentrating plasmonic luminescent down-shifting layers for photovoltaic devices. Physics, simulation, and photonic engineering of photovoltaic devices VI, International Society for Optics and Photonics, 2017, pp. 100991AGoogle Scholar
  37. 37.
    H. Ahmed, S. McCormack, J. Doran, Plasmonic luminescent down shifting layers for the enhancement of CdTe mini-modules performance. Sol. Energy 141, 242–248 (2017)CrossRefGoogle Scholar
  38. 38.
    P. Singh, P.K. Shahi, R. Prakash, S.B. Rai, An assembly and interaction of upconversion and plasmonic nanoparticles on organometallic nanofibers: enhanced multicolor upconversion, downshifting emission and the plasmonic effect. Nanotechnology 28, 415701 (2017)CrossRefGoogle Scholar
  39. 39.
    N. Kamanina, Mechanisms of optical limiting in π-conjugated organic system: fullerene-doped polyimide. Synth. Met. 127, 121–128 (2002)CrossRefGoogle Scholar
  40. 40.
    N. Kamanina, I. Bagrov, I. Belousova, S. Kognovitskii, A. Zhevlakov, Fullerene-doped π-conjugated organic systems under infrared laser irradiation. Opt. Commun. 194, 367–372 (2001)CrossRefGoogle Scholar
  41. 41.
    N.V. Kamanina, I.M. Belousova, I.V. Bagrov, L.N. Kaporskii, S.A. Tul’skii, A.P. Zhevlakov, Fullerene-doped polyimide systems as effective optical-power-limiting materials in visible and IR ranges, Laser Optics 2000: Control of Laser Beam Characteristics and Nonlinear Methods for Wavefront Control, International Society for Optics and Photonics, 2001, pp. 115–121Google Scholar
  42. 42.
    R. Ahmed, S. El-Bashir, Structure and physical properties of polymer composite films doped with fullerene nanoparticles, Int. J. Photoenergy (2010).  https://doi.org/10.1155/2011/801409 CrossRefGoogle Scholar
  43. 43.
    S. El-Bashir, N. Alwadai, N. AlZayed, AC/DC electrical conduction and dielectric properties of PMMA/PVAc/C60 down-shifting nanocomposite films. J. Mol. Struct. 1154, 239–247 (2018)CrossRefGoogle Scholar
  44. 44.
    R. Ahmed, Optical study on poly (methyl methacrylate)/poly (vinyl acetate) blends. Int. J. Photoenergy (2009).  https://doi.org/10.1155/2009/150389 CrossRefGoogle Scholar
  45. 45.
    R. Ahmed, Study on Different Solution-Cast Films of PMMA and PVAc. Int. J. Polym. Mater. 57, 969–978 (2008)CrossRefGoogle Scholar
  46. 46.
    E. Crispim, I. Schuquel, A. Rubira, E. Muniz, Solvent effects on the miscibility of PMMA/PVAc blends: II. Using two-dimensional NMR method, NOESY. Polymer 41, 933–945 (2000)CrossRefGoogle Scholar
  47. 47.
    M. Song, F. Long, Miscibility in blends of poly (vinyl acetate) with poly (methyl methacrylate) studied by FTIR and DSC. Eur. Polym. J. 27, 983–986 (1991)CrossRefGoogle Scholar
  48. 48.
    E.G. Crispim, A.F. Rubira, E.C. Muniz, Solvent effects on the miscibility of poly (methyl methacrylate)/poly (vinyl acetate) blends: I: using differential scanning calorimetry and viscometry techniques. Polymer 40, 5129–5135 (1999)CrossRefGoogle Scholar
  49. 49.
    H. Zeyada, M. El-Nahass, I. El-Zawawi, E. El-Menyawy, Structural and optical properties of thermally evaporated 2-(2, 3-dihydro-1, 5-dimethyl-3-oxo-2-phenyl-1H-pyrazol-4-ylimino)-2-(4-nitrophenyl) acetonitrile thin films. J. Phys. Chem. Solids 71, 867–873 (2010)CrossRefGoogle Scholar
  50. 50.
    J. Kongsakul, N. Witit-anun, S. Chaiyakun, P. Kaewtrakulpong, Measurement of Aluminum Thin Film Thickness by Fizeau Interferometer Technique (Dept. of Physics, Burapa University, Saen Suk, 2005)Google Scholar
  51. 51.
    S. El-Bashir, I. Yahia, F. Al-Harbi, H. Elburaih, F. Al-Faifi, N. Aldosari, Improving photostability and efficiency of polymeric luminescent solar concentrators by PMMA/MgO nanohybrid coatings. Int. J. Green Energy 14, 270–278 (2017)CrossRefGoogle Scholar
  52. 52.
    R. Lopez-Delgado, H. Higuera-Valenzuela, A. Zazueta-Raynaud, A. Ramos, J. Pelayo, D. Berman, M. Álvarez-Ramos, A. Ayon, Enhancing the power conversion efficiency of solar cells employing down-shifting silicon quantum dots. J. Phys.: Conf. Ser. 773, 012087 (2016)Google Scholar
  53. 53.
    A. Du Pasquier, S. Miller, M. Chhowalla, On the use of Ga–In eutectic and halogen light source for testing P3HT–PCBM organic solar cells. Sol. Energy Mater. Sol. Cells 90, 1828–1839 (2006)CrossRefGoogle Scholar
  54. 54.
    Y.-T. Shieh, K.-H. Liu, The effect of carbonyl group on sorption of CO2 in glassy polymers. J. Supercrit. Fluids 25, 261–268 (2003)CrossRefGoogle Scholar
  55. 55.
    S. Ramesh, K.H. Leen, K. Kumutha, A. Arof, FTIR studies of PVC/PMMA blend based polymer electrolytes. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 66, 1237–1242 (2007)CrossRefGoogle Scholar
  56. 56.
    K. Aouachria, N. Belhaneche-Bensemra, Miscibility of PVC/PMMA blends by vicat softening temperature, viscometry, DSC and FTIR analysis. Polym. Test. 25, 1101–1108 (2006)CrossRefGoogle Scholar
  57. 57.
    S. El-Bashir, O. AlHarbi, M. AlSalhi, Optimal design for extending the lifetime of thin film luminescent solar concentrators. Optik-Int. J. Light Electron Opt. 125, 5268–5272 (2014)CrossRefGoogle Scholar
  58. 58.
    A. Hayashi, S. Yamamoto, K. Suzuki, T. Matsuoka, The first application of fullerene polymer-like materials, C 60 Pd n, as gas adsorbents. J. Mater. Chem. 14, 2633–2637 (2004)CrossRefGoogle Scholar
  59. 59.
    K. Miura, M. Ishikawa, C60 intercalated graphite as nanolubricants. Materials 3, 4510–4517 (2010)CrossRefGoogle Scholar
  60. 60.
    S.R. Mohan, M. Joshi, T. Dhami, V. Awasthi, C. Shalu, B. Singh, V. Singh, Charge transport in thin films of MDMO PPV dispersed with lead sulfide nanoparticles. Synth. Met. 224, 80–85 (2017)CrossRefGoogle Scholar
  61. 61.
    S. El-Bashir, Effect of solvent polarity on the homogeneity and photophysical properties of MDMO-PPV films: towards efficient plastic solar cells. J. King Saud Univ.-Sci. (2017).  https://doi.org/10.1016/j.jksus.2017.09.008 CrossRefGoogle Scholar
  62. 62.
    S. El-Bashir, W. Alenazi, M. AlSalhi, Optical dispersion parameters and stability of poly (9,9′-di-n-octylfluorenyl-2.7-diyl)/ZnO nanohybrid films: towards organic photovoltaic applications. Mater. Res. Exp. 4, 025503 (2017)CrossRefGoogle Scholar
  63. 63.
    S. El-Bashir, F. Al-Harbi, H. Elburaih, F. Al-Faifi, I. Yahia, Red photoluminescent PMMA nanohybrid films for modifying the spectral distribution of solar radiation inside greenhouses. Renew. Energy 85, 928–938 (2016)CrossRefGoogle Scholar
  64. 64.
    S. El-Bashir, F. Barakat, M. AlSalhi, Double layered plasmonic thin-film luminescent solar concentrators based on polycarbonate supports. Renew. Energy 63, 642–649 (2014)CrossRefGoogle Scholar
  65. 65.
    M. El-Shaarawy, S. El-Bashir, M. Hammam, M. El-Mansy, Bent fluorescent solar concentrators (BFSCs): spectroscopy, stability and outdoor performance. Curr. Appl. Phys. 7, 643–649 (2007)CrossRefGoogle Scholar
  66. 66.
    A.F. Mansour, M.G. El-Shaarawy, S.M. El-Bashir, M.K. El-Mansy, M. Hammam, Optical study of perylene dye doped poly (methyl methacrylate) as fluorescent solar collector. Polym. Int. 51, 393–397 (2002)CrossRefGoogle Scholar
  67. 67.
    J. Tauc, R. Grigorovici, A. Vancu, Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi (b), 15, 627–637 (1966)CrossRefGoogle Scholar
  68. 68.
    J. Tauc, Absorption edge and internal electric fields in amorphous semiconductors. Mater. Res. Bull. 5, 721–729 (1970)CrossRefGoogle Scholar
  69. 69.
    S.K. O’Leary, P. Lim, On determining the optical gap associated with an amorphous semiconductor: a generalization of the Tauc model. Solid State Commun. 104, 17–21 (1997)CrossRefGoogle Scholar
  70. 70.
    J.M. Ziman, Electrons and Phonons: the Theory of Transport Phenomena in Solids (Oxford University Press, Oxford, 1960)Google Scholar
  71. 71.
    C. Kittel, Introduction to Solid State Physics (Wiley, Hoboken, 2005)Google Scholar
  72. 72.
    M. Fox, Optical Properties of Solids (AAPT, Maryland, 2002)Google Scholar
  73. 73.
    J.I. Pankove, Optical Processes in Semiconductors (Courier Corporation, Chelmford, 2012)Google Scholar
  74. 74.
    M.L. Cohen, J.R. Chelikowsky, Electronic Structure and Optical Properties of Semiconductors (Springer Science & Business Media, Berlin, 2012)Google Scholar
  75. 75.
    K. John, G.J. Reddy, S.V. Naidu, Miscibility studies of poly (vinyl acetate) blends with poly (methyl methacrylate) and poly (vinyl chloride). Int. J. Polym. Anal. Charact. 8, 295–299 (2003)CrossRefGoogle Scholar
  76. 76.
    S. Zheng, J. Huang, J. Li, Q. Guo, Phase behavior and properties of poly (methyl methacrylate)/poly (vinyl acetate) blends prepared via in situ polymerization. J. Appl. Polym. Sci. 69, 675–684 (1998)CrossRefGoogle Scholar
  77. 77.
    M. Hammam, M. El-Mansy, S. El-Bashir, M. El-Shaarawy, Performance evaluation of thin-film solar concentrators for greenhouse applications. Desalination 209, 244–250 (2007)CrossRefGoogle Scholar
  78. 78.
    S. El-Bashir, Photophysical Properties of PMMA Nanohybrids and Their Applications: Luminescent Solar Concentrators & Smart Greenhouses (LAP LAMBERT Academic Publishing, Riga, 2012)Google Scholar
  79. 79.
    Z. Alfassi, R. Huie, P. Neta, L. Shoute, Temperature dependence of the rate constants for reaction of inorganic radicals with organic reductants. J. Phys. Chem. 94, 8800–8805 (1990)CrossRefGoogle Scholar
  80. 80.
    J.R. Lakowicz, B.R. Masters, Principles of fluorescence spectroscopy. J. Biomed. Opt. 13, 029901 (2008)CrossRefGoogle Scholar
  81. 81.
    S. El-Bashir, I. Yahia, M. Binhussain, M. AlSalhi, Designing of PVA/Rose Bengal long-pass optical window applications. Results Phys. (2017).  https://doi.org/10.1016/j.rinp.2017.03.033 CrossRefGoogle Scholar
  82. 82.
    S. El-Bashir, I. Yahia, M. Binhussain, M. AlSalhi, Designing of PVA/Rose Bengal long-pass optical window applications. Results Phys. 7, 1238–1244 (2017)CrossRefGoogle Scholar
  83. 83.
    M.A. Green, Solar Cells: Operating Principles, Technology, and System Applications (Prentice-Hall Inc, Upper Saddle River, 1982)Google Scholar
  84. 84.
    A.J. McEvoy, L. Castaner, T. Markvart, Solar Cells: Materials, Manufacture and Operation (Academic Press, Cambridge, 2012)Google Scholar
  85. 85.
    S. Fang, K. Adomi, S. Iyer, H. Morkoc, H. Zabel, C. Choi, N. Otsuka, Gallium arsenide and other compound semiconductors on silicon. J. Appl. Phys. 68, R31–R58 (1990)CrossRefGoogle Scholar
  86. 86.
    M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, Solar cell efficiency tables (Version 45). Prog. Photovolt.: Res. Appl. 23, 1–9 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics & Astronomy, Science CollegeKing Saud UniversityRiyadhKingdom of Saudi Arabia
  2. 2.Department of Physics, Faculty of ScienceBenha UniversityBenhaEgypt
  3. 3.Physics Department, Science CollegePrincess Nora Bint Abdul Rahman UniversityRiyadhKingdom of Saudi Arabia

Personalised recommendations