Structure and optoelectronic properties of AZO/Al/AZO tri-layer films grown on flexible substrates

  • Xiuyan LiEmail author
  • Chuanjin Lin
  • Chunyao XuEmail author


Transparent and conductive AZO/Al/AZO tri-layer films are successfully deposited on flexible poly carbonate (PC) substrates using radio frequency (rf) magnetron sputtering of Al-doped ZnO (AZO) and sputtering with an Al buffer at room temperature. Before the AZO film coating is fabricated, the PC substrates are modified using oxygen plasma etching, to render the surface hydrophilic. The microstructures of these samples are determined using X-ray diffraction (XRD), field emission scanning electron microscopy and transmission electron microscope (TEM). The XRD diffraction patterns and TEM images show that the AZO films are polycrystalline phase with a hexagonal ZnO wurtzite structure. The electrical resistivity, the Hall mobility, the carrier concentration and the optical transmittance of the bi-layer and tri-layer AZO films are strongly dependent on the thickness of the Al buffer layer. When the thickness of the Al buffer is increased, the (002) diffraction peak, shifts slightly to a lower angle and there is a gradual reduction in the value for the full width at half maximum for the AZO films. The microstructure and crystalline characteristics of the bi-layer and tri-layer AZO films are improved by annealing. The figure of merit shows that AZO/Al/AZO tri-layer films wherein the Al is 2 nm thick and which are annealed at 120 °C have better optoelectronic performance.



The authors gratefully acknowledge the support of the Natural Science Foundation of Fujian Province in China (Grant No. 2017-J01772), and the Educational research projects for young and middle-aged teachers in Fujian (Grant No. JT180302).

Compliance with ethical standards

Conflict of interest

No potential conflict of interest was reported by the authors.


  1. 1.
    K. Jung, W.K. Choi, S.J. Yoon, H.J. Kim, J.W. Choi, Appl. Surf. Sci. 256, 6219 (2010)CrossRefGoogle Scholar
  2. 2.
    S. Kuprenaite, A. Abrutis, V. Kubilius, T. Murauskas, Z. Saltyte, V. Plausinaitiene, Thin Solid Films 599, 19 (2016)CrossRefGoogle Scholar
  3. 3.
    C.H. Huang, D.Y. Chen, C.Y. Hsu, Ceram. Int. 38, 1057 (2012)CrossRefGoogle Scholar
  4. 4.
    D. Miao, S. Jiang, H. Zhao, S. Shang, Z. Chen, J. Alloys Compd. 616, 26 (2014)CrossRefGoogle Scholar
  5. 5.
    B.G. Kim, J.Y. Kim, S.J. Lee, J.H. Park, D.G. Lim, M.G. Park, Appl. Surf. Sci. 257, 1063 (2010)CrossRefGoogle Scholar
  6. 6.
    C.H. Tseng, C.H. Huang, H.C. Chang, D.Y. Chen, C.P. Chou, C.Y. Hsu, Thin Solid Films 519, 7959 (2011)CrossRefGoogle Scholar
  7. 7.
    J. Lee, D. Lee, D. Lim, K. Yang, Thin Solid Films 515, 6094 (2007)CrossRefGoogle Scholar
  8. 8.
    Y.S. Jung, H.W. Choi, K.H. Kim, J. Korean Phys. Soc. 55, 1945 (2009)CrossRefGoogle Scholar
  9. 9.
    C.H. Liang, Y.J. Hsiao, W.S. Hwang, Thin Solid Films 612, 419 (2016)CrossRefGoogle Scholar
  10. 10.
    H.J. Cho, K.W. Park, J.K. Ahn, N.J. Seong, S.G. Yoon, W.H. Park, J.Y. Lee, J. Electrochem. Soc. 156, J215 (2009)CrossRefGoogle Scholar
  11. 11.
    J.H. Kim, D.S. Kim, S.K. Kim, Y.Z. Yoo, J.H. Lee, S.W. Kim, T.Y. Seong, Ceram. Int. 42, 3473 (2016)CrossRefGoogle Scholar
  12. 12.
    D. Miao, S. Jiang, S. Shang, Z. Chen, Vacuum 106, 1 (2014)CrossRefGoogle Scholar
  13. 13.
    M. Li, Y. Wang, Y. Wang, X. Wei, Ceram. Int. 43, 15442 (2017)CrossRefGoogle Scholar
  14. 14.
    C. Guillén, J. Herrero, Thin Solid Films 520, 1 (2011)CrossRefGoogle Scholar
  15. 15.
    B. Sim, H. Hwang, S. Ryu, H. Baik, M. Lee, Jpn. J. Appl. Phys. 49, 060205 (2010)CrossRefGoogle Scholar
  16. 16.
    B. Sim, E.H. Kim, J. Park, M. Lee, Surf. Coat. Technol. 204, 309 (2009)CrossRefGoogle Scholar
  17. 17.
    K. Gotoh, A. Yasukawa, Y. Kobayashi, Polym. J. 43, 545 (2011)CrossRefGoogle Scholar
  18. 18.
    C.Y. Tsay, K.C. Pai, Thin Solid Films 654, 11 (2018)CrossRefGoogle Scholar
  19. 19.
    D.Y. Yun, W.S. Choi, Y.S. Park, B. Hong, Appl. Surf. Sci. 254, 7925 (2008)CrossRefGoogle Scholar
  20. 20.
    C.H. Tseng, W.H. Wang, H.C. Chang, C.P. Chou, C.Y. Hsu, Vacuum 85, 26 3 (2010)CrossRefGoogle Scholar
  21. 21.
    M. Lv, X. Xiu, Z. Pang, Y. Dai, S. Han, Appl. Surf. Sci. 252, 2006 (2005)CrossRefGoogle Scholar
  22. 22.
    Y.H. Song, T.Y. Eom, S.B. Heo, J.Y. Cheon, B.C. Cha, D. Kim, Mater. Lett. 205, 122 (2017)CrossRefGoogle Scholar
  23. 23.
    Y.S. Kim, J.H. Park, D.H. Choi, H.S. Jang, J.H. Lee, H.J. Park, J.I. Choi, D.H. Ju, J.Y. Lee, D. Kim, Appl. Surf. Sci. 254, 1524 (2007)CrossRefGoogle Scholar
  24. 24.
    J.Y. Tseng, Y.T. Chen, M.Y. Yang, C.Y. Wang, P.C. Li, W.C. Yu, Y.F. Hsu, S.F. Wang, Thin Solid Films 517, 6310 (2009)CrossRefGoogle Scholar
  25. 25.
    L. Nulhakim, H. Makino, Thin Solid Films 615, 158 (2016)CrossRefGoogle Scholar
  26. 26.
    M. Chen, Z.L. Pei, C. Sun, L.S. Wen, X. Wang, J. Cryst. Growth 220, 254 (2000)CrossRefGoogle Scholar
  27. 27.
    L. Lu, H. Shen, F. Jiang, C. Yang, L. Lin, Physica B 405, 3320 (2010)CrossRefGoogle Scholar
  28. 28.
    A. Zdyb, E. Krawczak, S. Gułkowski, Opto-Electron. Rev. 26, 247 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Physics and Information EngineeringMinnan Normal UniversityZhangzhouChina

Personalised recommendations