Synthesis and microstructures of La1−xCaxCrO3 perovskite powders for optical properties

  • Yimin Wan
  • Jian Yang
  • Haigang Hou
  • Shunjian Xu
  • Guiwu LiuEmail author
  • Shahid HussainEmail author
  • Guanjun Qiao


Calcium-doped lanthanum chromates La1−xCaxCrO3 (0 ≤ x ≤ 0.4) are successfully synthesized using sol–gel method. The La1−xCaxCrO3 powders were characterized using X-ray diffraction, scanning electron microscope, X-ray photoelectron spectroscopy and Ultraviolet–Visible spectroscopy. To determine appropriate calcination temperature, the thermal decomposition process of La0.8Ca0.2CrO3 precursor is investigated via thermogravimetric and differential scanning calorimetry, X-ray diffraction and Fourier Transform Infrared spectroscopy analyses. The highest crystallization in La0.8Ca0.2CrO3 can be obtained while calcining at 800 °C. The microstructural analyses demonstrate that the La1−xCaxCrO3 nanoperovskite powders with a diameter of ~ Ø20 nm are nearly spherical, whereas the grain sizes decrease with increasing the doping concentration of calcium. The substantial formation of Cr6+ ions after Ca-doping decrease the band gap energy of powders achieved during the formation of impurity energy level, which can contribute in potential optical applications.



This work was supported by the National Natural Science Foundation of China (51572112), the Six Talent Peaks Project of Jiangsu Province (TD-XCL-004), the 333 talents project of Jiangsu Province (BRA2017387) and the Innovation/Entrepreneurship Program ([2015]26) and the Qing Lan Project ([2016]15) of Jiangsu Province.


  1. 1.
    S.P. Jiang, L. Liu, K.P. Ong, P. Wu, J. Li, J. Pu, Electrical conductivity and performance of doped LaCrO3 perovskite oxides for solid oxide fuel cells. J. Power Sources 176, 82–89 (2008)Google Scholar
  2. 2.
    F. Boroomand, E. Wessel, H. Bausinger, K. Hilpert, Correlation between defect chemistry and expansion during reduction of doped LaCrO3 interconnects for SOFCs. Solid State Ionics 129(1–4), 251–258 (2000)Google Scholar
  3. 3.
    J. Sfeir, P.A. Buffat, P. Mockli, N. Xanthopoulos, R. Vasquez, H.J. Mathieu, J. Van Herle, K.R. Thampi, Lanthanum chromite based catalysts for oxidation of methane directly on SOFC anodes. J. Catal. 202(2), 229–244 (2001)Google Scholar
  4. 4.
    Z. Han, J. Liu, X.W. Li, Y.X. Chen, G.H. Liu, J.T. Li, Ca2+-Doped LaCrO3: a novel energy-saving material with high infrared emissivity. J. Am. Ceram. Soc. 97(9), 2705–2708 (2014)Google Scholar
  5. 5.
    J.W. Fergus, Lanthanum chromite-based materials for solid oxide fuel cell interconnects. Solid State Ionics 171(1–2), 1–15 (2004)Google Scholar
  6. 6.
    Y.H. Chen, X.Y. Lu, Y.Z. Ding, X.Q. Liu, G.Y. Meng, Microwave assisted synthesis, sinterability and properties of Ca-Zn co-doped LaCrO3 as interconnect material for IT-SOFCs. J. Rare Earths 28(1), 153–157 (2010)Google Scholar
  7. 7.
    Z.J. Feng, C.L. Zeng, LaCrO3-based coatings deposited by high-energy micro-arc alloying process on a ferritic stainless steel interconnect material. J. Power Sources 195(13), 4242–4246 (2010)Google Scholar
  8. 8.
    P.Y. Guo, C.L. Zeng, Y. Shao, Effect of LaCrO3 coating on high temperature oxidation of type 316 stainless steel. J. Rare Earths 29(7), 698–701 (2011)Google Scholar
  9. 9.
    G. Deng, Y.G. Chen, M.D. Tao, C.L. Wu, X.Q. Shen, H. Yang, M. Liu, Study of the electrochemical hydrogen storage properties of the proton-conductive perovskite-type oxide LaCrO3 as negative electrode for Ni/MH batteries. Electrochim. Acta 55(3), 884–886 (2010)Google Scholar
  10. 10.
    G. Saracco, G. Scibilia, A. Iannibello, G. Baldi, Methane combustion on Mg-doped LaCrO3 perovskite catalysts. Appl. Catal. B 8(2), 229–244 (1996)Google Scholar
  11. 11.
    A. Mishra, R. Prasad, Preparation and application of perovskite catalysts for diesel soot emissions control: an overview. Catal. Rev. 56(1), 57–81 (2014)Google Scholar
  12. 12.
    Y. Lu, Z.G. Fang, C.H. Lu, L. Wei, Y.R. Ni, Z.Z. Xu, S.Y. Tao, High thermal radiation of Ca-doped lanthanum chromite. RSC Adv. 5(39), 30667–30674 (2015)Google Scholar
  13. 13.
    M. Panneerselvam, K.J. Rao, Microwave preparation and sintering of industrially important perovskite oxides: LaMO3 (M = Cr, Co, Ni). J. Mater. Chem. 13(3), 596–601 (2003)Google Scholar
  14. 14.
    B.A. Josephine, A. Manikandan, V.M. Teresita, S.A. Antony, Fundamental study of LaMgxCr1−xO3−δ perovskites nano-photocatalysts: sol-gel synthesis, characterization and humidity sensing. Korean J. Chem. Eng. 33(5), 1590–1598 (2016)Google Scholar
  15. 15.
    S. Wang, K.K. Huang, B.N. Zheng, J.Q. Zhang, S.H. Feng, Mild hydrothermal synthesis and physical property of perovskite Sr doped LaCrO3. Mater. Lett. 101, 86–89 (2013)Google Scholar
  16. 16.
    J.K. Ye, C.H. Bu, Z. Han, F. Wang, X.W. Li, Y.X. Chen, J.T. Li, Flame-spraying synthesis and infrared emission property of Ca2+/Cr3+ doped LaAlO3 microspheres. J. Eur. Ceram. Soc. 35(11), 3111–3118 (2015)Google Scholar
  17. 17.
    N. Zarrin, Shahidhusain, Effect of cobalt doping on structural and optical properties of nanocrystalline La0.8Pb0.2CrO3 orthochromite. AIP Conf. Proc. 1942(1), 050070 (2018)Google Scholar
  18. 18.
    O. Polat, Z. Durmus, F.M. Coskun, M. Coskun, A. Turut, Engineering the band gap of LaCrO3 doping with transition metals (Co, Pd, and Ir). J. Mater. Sci. 53(5), 3544–3556 (2018)Google Scholar
  19. 19.
    S. Makhloufi, M. Omari, Structural, electrical and electrochemical characterizations of perovskite Ni-doped SrCoO3−δ. J. Inorg. Organomet. Polym Mater. 26(1), 32–40 (2016)Google Scholar
  20. 20.
    R.H.E. van Doorn, H. Kruidhof, A. Nijmeijer, L. Winnubst, A.J. Burggraaf, Preparation of La0.3Sr0.7CoO3−δ perovskite by thermal decomposition of metal-EDTA complexes. J. Mater. Chem. 8(9), 2109–2112 (1998)Google Scholar
  21. 21.
    A.A. Samat, N.A. Abdullah, M.A.M. Ishak, N. Osman, Effect of heat treatment on the phase formation of La0.6Sr0.4CoO3−α. Int. J. Chem. Biomol. Eng. 6(10), 951–955 (2012)Google Scholar
  22. 22.
    H. Fodil, M. Omari, Synthesis, Structural and physicochemical characterization of nanocrystalline La1−xNaxCrO3 powders by sol-gel method. J. Inorg. Organomet. Polym Mater. 27(5), 1473–1481 (2017)Google Scholar
  23. 23.
    M. Lebid, M. Omari, Synthesis and electrochemical properties of LaFeO3 oxides prepared via sol-gel method. Arab J. Sci. Eng. 39(1), 147–152 (2014)Google Scholar
  24. 24.
    K. Rida, A. Benabbas, F. Bouremmad, M.A. Pena, E. Sastre, A. Martinez-Arias, Effect of calcination temperature on the structural characteristics and catalytic activity for propene combustion of sol-gel derived lanthanum chromite perovskite. Appl. Catal. A 327(2), 173–179 (2007)Google Scholar
  25. 25.
    A.A. Athawale, P.A. Desai, Silver doped lanthanum chromites by microwave combustion method. Ceram. Int. 37(8), 3037–3043 (2011)Google Scholar
  26. 26.
    S.M. El-Sheikh, M.M. Rashad, Effect of Sm3+ and Sr2+ dopants on the FT-IR, photoluminescence and surface texture of lanthanum chromite nanoparticles. J. Alloys Compd. 496(1–2), 723–732 (2010)Google Scholar
  27. 27.
    P. Kumar, R.K. Singh, A.S.K. Sinha, P. Singh, Effect of isovalent ion substitution on electrical and dielectric properties of LaCrO3. J. Alloys Compd. 576, 154–160 (2013)Google Scholar
  28. 28.
    Y. Lu, R. Zhang, L. Wei, C.H. Lu, Y.R. Ni, Z.Z. Xu, S.Y. Tao, P.W. Li, Novel spectral properties for La0.7Ca0.3CrO3 ceramics by Mo6+ doping. J. Mater. Sci. 27(3), 2412–2418 (2016)Google Scholar
  29. 29.
    R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. 32(5), 751–767 (1976)Google Scholar
  30. 30.
    Y. Uwamino, T. Ishizuka, H. Yamatera, X-ray photoelectron spectroscopy of rare-earth compounds. J. Electron. Spectrosc. Relat. Phenom. 34(1), 67–78 (1984)Google Scholar
  31. 31.
    S. Ponce, M.A. Pena, J.L.G. Fierro, Surface properties and catalytic performance in methane combustion of Sr-substituted lanthanum manganites. Appl. Catal. B 24(3–4), 193–205 (2000)Google Scholar
  32. 32.
    H.Y.H. Chan, C.G. Takoudis, M.J. Weaver, High-pressure oxidation of ruthenium as probed by surface-enhanced Raman and X-ray photoelectron spectroscopies. J. Catal. 172(2), 336–345 (1997)Google Scholar
  33. 33.
    X.Y. Li, Y.L. Wang, W.F. Liu, G.S. Jiang, C.F. Zhu, Study of oxygen vacancies’ influence on the lattice parameter in ZnO thin film. Mater. Lett. 85, 25–28 (2012)Google Scholar
  34. 34.
    D.L. Hoang, A. Dittmar, M. Schneider, A. Trunschke, H. Lieske, K.W. Brzezinka, K. Witke, Evidence of lanthanum-chromium mixed oxides formed in CrOx/La2O3 model catalysts. Thermochim. Acta 400(1–2), 153–163 (2003)Google Scholar
  35. 35.
    Y. Jeon, D.H. Park, J.I. Park, S.H. Yoon, I. Mochida, J.H. Choy, Y.G. Shul, Hollow fibers networked with perovskite nanoparticles for H2 production from heavy oil. Sci. Rep. 3, 2902 (2013)Google Scholar
  36. 36.
    X.M. Liu, W.H. Su, Z. Lu, J. Liu, L. Pei, W. Liu, L.Y. He, Mixed valence state and electrical conductivity of La1−xSrxCrO3. J. Alloys Compd. 305(1–2), 21–23 (2000)Google Scholar
  37. 37.
    H. Qi, Y.X. Luan, S.T. Che, L. Zuo, X.D. Zhao, C.M. Hou, Preparation, characterization and electrical properties of Ca and Sr doped LaCrO3. Inorg. Chem. Commun. 66, 33–35 (2016)Google Scholar
  38. 38.
    T. Hanawa, M. Ota, Calcium phosphate naturally formed on titanium in electrolyte solution. Biomaterials 12(8), 767–774 (1991)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringJiangsu UniversityZhenjiangChina
  2. 2.School of Mechanical and Electrical EngineeringXinyu UniversityXinyuChina
  3. 3.State Key Laboratory for Mechanical Behavior of MaterialsXi’an Jiaotong UniversityXi’anChina

Personalised recommendations