Phase formation and electrocaloric effect in nonstoichiometric 0.94Bi0.5+xNa0.5TiO3-0.06BaTiO3 ceramics

  • Feng Li
  • Jiahao Li
  • Jiwei ZhaiEmail author
  • Bo Shen
  • Shandong LiEmail author
  • Huarong ZengEmail author


Excess Bi2O3 was added to 0.94Bi0.5Na0.5TiO3-0.06BaTiO3 ceramic and the evolution of dielectric, electromechanical properties and electrocaloric effect (ECE) were studied. With increasing Bi2O3 addition, the nonergodic relaxor phase transformed to ergodic relaxor phase. The XRD patterns and Raman spectroscopy show the increasing relaxor properties with excess Bi2O3 doping. The Bi0.53Na0.5TiO3-BaTiO3 ceramic exhibited a temperature insensitive ECE with an “Λ” type, the variation of which was less than 26% over 30 ~ 120 °C. The temperature stability of ECE for Bi0.53Na0.5TiO3-BaTiO3 ceramic was related with the characteristics of ergodic relaxor phase, which was clarified by structural and Raman spectroscopy analysis.



This work was supported by the National Natural Science Foundation of China under Grant (No. 51772211), National Key R&D Program of China (2016YFA0201103) and Shanghai Municipal Science and Technology Commission funded international cooperation project under No. 16520721500. This work is also supported by the National Natural Science Foundation of China No.11674187 and the Instrument Developing Project of Chinese Academy of Sciences (ZDKYYQ20180004).


  1. 1.
    M. Valant, Prog. Mater Sci. 57, 980 (2012)CrossRefGoogle Scholar
  2. 2.
    X. Moya, S. Kar-Narayan, N.D. Mathur, Nat. Mater. 13, 439 (2014)CrossRefGoogle Scholar
  3. 3.
    C. Bechtold, C. Chluba, R.L. de Miranda, E. Quandt, Appl. Phys. Lett. 101, 091903 (2012)CrossRefGoogle Scholar
  4. 4.
    S.A. Nikitin, G. Myalikgulyev, A.M. Tishin, M.P. Annaorazov, K.A. Asatryan, A.L. Tyurin, Phys. Lett. A 148, 363 (1990)CrossRefGoogle Scholar
  5. 5.
    A.S. Mischenko, Q. Zhang, J.F. Scott, R.W. Whatmore, N.D. Mathur, Science 311, 1270 (2006)CrossRefGoogle Scholar
  6. 6.
    B. Neese, B.J. Chu, S.G. Lu, Y. Wang, E. Furman, Science 321, 821 (2008)CrossRefGoogle Scholar
  7. 7.
    F.L. Goupil, A. Berenov, A.K. Axelsson, M. Valant, N.M. Alford, J. Appl. Phys. 111, 124109 (2012)CrossRefGoogle Scholar
  8. 8.
    J. Hagberg, A. Uusimäki, H. Jantunen, Appl. Phys. Lett. 92, 132909 (2008)CrossRefGoogle Scholar
  9. 9.
    G.R. Chen, Y.C. Zhang, X.M. Chu, G.X. Zhao, F. Li, J.W. Zhai, Q.Q. Ren, B. Li, S.D. Li, J. Alloy. Compd. 727, 785 (2017)CrossRefGoogle Scholar
  10. 10.
    B.L. Peng, H.Q. Fan, Q. Zhang, Adv. Funct. Mater. 23, 2987 (2013)CrossRefGoogle Scholar
  11. 11.
    V.S. Bondarev, I.N. Flerov, M.V. Gorev, E.I. Pogoreltsev, M.S. Molokeev, E.A. Mikhaleva, A.V. Shabanov, A.V. Eskov, Scr. Mater. 146, 51 (2018)CrossRefGoogle Scholar
  12. 12.
    X.S. Qian, H.J. Ye, Y.T. Zhang, H.M. Gu, X.Y. Li, C.A. Randall, Q.M. Zhang, Adv. Funct. Mater. 24, 1300 (2014)CrossRefGoogle Scholar
  13. 13.
    X. Moya, E.S. Taulats, S. Crossley, D.G. Alonso, S.K. Narayan, A. Planes, L. Mañosa, N.D. Mathur, Adv. Mater. 25, 1360 (2013)CrossRefGoogle Scholar
  14. 14.
    Y. Bai, X. Han, K. Ding, L.J. Qiao, Appl. Phys. Lett. 103, 162902 (2013)CrossRefGoogle Scholar
  15. 15.
    X.Q. Liu, T.T. Chen, M.S. Fu, Y.J. Wu, X.M. Chen, Ceram. Int. 40, 11269 (2014)CrossRefGoogle Scholar
  16. 16.
    F.L. Goupil, R. McKinnon, V. Koval, G. Viola, S. Dunn, A. Berenov, H.X. Yan, N.M. Alford, Sci. Rep. 6, 28251 (2016)CrossRefGoogle Scholar
  17. 17.
    F.L. Goupil, J. Bennett, A.K. Axelsson, M. Valant, A. Berenov, A.J. Bell, T.P. Comyn, N.M. Alford, Appl. Phys. Lett. 107, 172903 (2015)CrossRefGoogle Scholar
  18. 18.
    F.L. Goupil, N.M. Alford, APL Mater. 4, 064104 (2016)CrossRefGoogle Scholar
  19. 19.
    F. Weyland, M. Acosta, J. Koruza, P. Breckner, J. Rödel, N. Novak, Adv. Funct. Mater. 26, 7326 (2016)CrossRefGoogle Scholar
  20. 20.
    F. Weyland, M. Acosta, M. Vögler, Y. Ehara, J. Rödel, N. Novak, J. Mater. Sci. 53, 9393 (2018)CrossRefGoogle Scholar
  21. 21.
    L. Yang, X.S. Qian, C.M. Koo, Y. Hou, T. Zhang, Y. Zhou, M.R. Lin, J.H. Qiu, Q.M. Zhang, Nano Energy 22, 461 (2016)CrossRefGoogle Scholar
  22. 22.
    I. Ponomareva, S. Lisenkov, Phys. Rev. Lett. 108, 167604 (2012)CrossRefGoogle Scholar
  23. 23.
    B. Li, W.J. Ren, X.W. Wang, H. Meng, X.G. Liu, Z.J. Wang, Z.D. Zhang, Appl. Phys. Lett. 96, 102903 (2010)CrossRefGoogle Scholar
  24. 24.
    H.H. Wu, J.M. Zhu, T.Y. Zhang, RSC Adv. 5, 37476 (2015)CrossRefGoogle Scholar
  25. 25.
    J. Wang, M. Liu, Y.J. Zhang, T. Shimada, S.Q. Shi, T. Kitamura, J. Appl. Phys. 115, 164102 (2014)CrossRefGoogle Scholar
  26. 26.
    S.P. Alpay, J. Mantese, S. Trolier-McKinstry, Q.M. Zhang, R.W. Whatmore, MRS Bull. 39, 1099 (2014)CrossRefGoogle Scholar
  27. 27.
    S.T. Zhang, A.B. Kounga, E. Aulbach, H. Ehrenberg, J. Rödel, Appl. Phys. Lett. 91, 112906 (2007)CrossRefGoogle Scholar
  28. 28.
    F. Li, K. Yang, X. Liu, J. Zou, J.W. Zhai, B. Shen, P. Li, J. Shen, B.H. Liu, P. Chen, K.Y. Zhao, H.R. Zeng, Scr. Mater. 141, 15 (2017)CrossRefGoogle Scholar
  29. 29.
    Y.S. Sung, J.M. Kim, J.H. Cho, T.K. Song, M.H. Kim, T.G. Park, Appl. Phys. Lett. 98, 012902 (2011)CrossRefGoogle Scholar
  30. 30.
    X.X. Wang, X.G. Tang, K.W. Kwok, H.L.W. Chan, C.L. Choy, Appl. Phys. A 80, 1071 (2005)CrossRefGoogle Scholar
  31. 31.
    I.T. Seo, S. Steiner, T. Frömling, J. Eur. Ceram. Soc. 37, 1429 (2017)CrossRefGoogle Scholar
  32. 32.
    X.S. Qiao, X.M. Chen, H.L. Lian, J.P. Zhou, P. Liu, J. Eur. Ceram. Soc. 36, 3995 (2016)CrossRefGoogle Scholar
  33. 33.
    X.S. Qiao, X.M. Chen, H.L. Lian, W.T. Chen, J.P. Zhou, P. Liu, J. Am. Ceram. Soc. 99, 198 (2016)CrossRefGoogle Scholar
  34. 34.
    S.G. Lu, B. Rožič, Q.M. Zhang, Z. Kutnjak, R. Pirc, M.R. Lin, X.Y. Li, L. Gorny, Appl. Phys. Lett. 97, 202901 (2010)CrossRefGoogle Scholar
  35. 35.
    M. Sanlialp, V.V. Shvartsman, M. Acosta, D.C. Lupascu, J. Am. Ceram. Soc. 99, 4022 (2016)CrossRefGoogle Scholar
  36. 36.
    F. Li, G.R. Chen, X. Liu, J.W. Zhai, B. Shen, H.R. Zeng, S.D. Li, P. Li, K. Yang, H.X. Yan, J. Eur. Ceram. Soc. 37, 4732 (2017)CrossRefGoogle Scholar
  37. 37.
    S.J. Lu, G.R. Chen, Y.C. Zhang, Z.M. Zhao, F. Li, Z.L. Lv, Z.M. Ma, D.D. Wang, C.J. Lu, S.D. Li, Ceram. Int. 44, 21950 (2018)CrossRefGoogle Scholar
  38. 38.
    J. Kreisel, A.M. Glazer, P. Bouvier, G. Lucazeau, Phys. Rev. B 63, 174106 (2001)CrossRefGoogle Scholar
  39. 39.
    D. Schutz, M. Deluca, W. Krauss, A. Feteira, T. Jackson, K. Reichmann, Adv. Funct. Mater. 22, 2285 (2012)CrossRefGoogle Scholar
  40. 40.
    X. Jiang, B. Wang, L. Luo, W. Li, J. Zhou, H. Chen, J. Solid State Chem. 213, 72 (2014)CrossRefGoogle Scholar
  41. 41.
    R. Haumont, P. Gemeiner, B. Dkhil, J.M. Kiat, A. Bulou, Phys. Rev. B 73, 104106 (2006)CrossRefGoogle Scholar
  42. 42.
    W.F. Bai, D.Q. Chen, P. Zheng, B. Shen, J.W. Zhai, Z.G. Ji, Dalton Trans. 45, 8573 (2016)CrossRefGoogle Scholar
  43. 43.
    C.Y. Tian, F.F. Wang, X. Ye, Y.Q. Xie, T. Wang, Y.X. Tang, D.Z. Sun, W.Z. Shi, Scr. Mater. 83, 25 (2014)CrossRefGoogle Scholar
  44. 44.
    G. Viola, H.P. Ning, X.J. Wei, M. Deluca, A. Adomkevicius, J. Khaliq, M.J. Reece, H.X. Yan, J. Appl. Phys. 114, 014107 (2013)CrossRefGoogle Scholar
  45. 45.
    J.G. Hao, W.F. Bai, W. Li, B. Shen, J.W. Zhai, J. Appl. Phys. 114, 044103 (2013)CrossRefGoogle Scholar
  46. 46.
    E. Sapper, N. Novak, W. Jo, T. Granzow, J. Rödel, J. Appl. Phys. 115, 194104 (2014)CrossRefGoogle Scholar
  47. 47.
    L.C. Li, M.X. Xu, Q. Zhang, P. Chen, N.Z. Wang, D.K. Xiong, B.L. Peng, L.J. Liu, Ceram. Int. 44, 343 (2018)CrossRefGoogle Scholar
  48. 48.
    Y. Bai, G.P. Zheng, S.Q. Shi, Mater. Res. Bull. 46, 1866 (2011)CrossRefGoogle Scholar
  49. 49.
    Electrocaloric Materials, T. Correia, Q. Zhang (eds.) (Springer-Verlag, Berlin, 2014)Google Scholar
  50. 50.
    G.Z. Zhang, M. Chen, B.Y. Fan, Y. Liu, M.Y. Li, S.L. Jiang, H.B. Huang, H. Liu, H.L. Li, Q. Wang, J. Am. Ceram. Soc. 100, 4581 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Functional Materials Research Laboratory, School of Materials Science & EngineeringTongji UniversityShanghaiPeople’s Republic of China
  2. 2.Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of CeramicsChinese Academy of SciencesShanghaiPeople’s Republic of China
  3. 3.University of Chinese Academy of SciencesBeijingPeople’s Republic of China
  4. 4.College of PhysicsQingdao UniversityQingdaoPeople’s Republic of China

Personalised recommendations