Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 23, pp 19644–19651 | Cite as

An improvised method for the synthesis of ZnAl2O4/ZnO nanocomposite and its use as a photocatalyst

  • Zaki Eldin Ali AbdallaEmail author
  • Mukesh Kumar
  • Ismail Hassan
  • Firdous Ahmad Ahangar
  • Wael Saud Althubaiti


Nanocomposite material ZnAl2O4/ZnO was prepared via layered double hydroxides co-precipitation method in the presence of triblock copolymer, Pluronic F127 as the template with different concentrations at pH 7. The material was characterized by XRD, N2 adsorption/desorption, UV–Vis diffused reflectance, TGA–DTA and SEM. XRD and SEM results reveal that ZnAl2O4/ZnO was highly ordered nanocrystalline material. N2 adsorption/desorption studies indicate that the pore size and pore volume increased significantly with the increase in concentration of F127 copolymer template, while the surface area is slightly decreased with increase of F127 template. TGA–DTA results reveal that the thermal stability of material increased after adding F127 template. The material was tested for its photocatalytic activity for a solution containing methyl orange dye and the 95.6% decolorization was achieved within 1 h. The intensive absorption light observed by UV–Vis reflectance of the catalyst confirmed high activity of the catalyst and suggest the probable photocatalytic degradation mechanism.



This project was supported by the Deanship of Scientific Research at Prince Sattam Bin Abdulaziz University under the research project #2015/01/3805.

Compliance with ethical standards

Conflict of interest

The authors declare no competing financial interest.


  1. 1.
    M. Pirhashemi, A. Habibi-Yangjeh, J. Photochem. Photobiol. 363, 31 (2018)CrossRefGoogle Scholar
  2. 2.
    A. Omo Ibhadon, P. Fitzpatrick, Catalysts 3, 189 (2013)CrossRefGoogle Scholar
  3. 3.
    M. Mousavi, A. Habibi-Yangjeh, S.R. Pouran, J. Mater. Sci.: Mater. Electron. 29, 1719 (2018)Google Scholar
  4. 4.
    M. Shekofteh-Gohari, A. Habibi-Yangjeh, Ceram. Int. 43, 3063 (2017)CrossRefGoogle Scholar
  5. 5.
    M. Pirhashemi, A. Habibi-Yangjeh, Mater. Chem. Phys. 214, 107 (2018)CrossRefGoogle Scholar
  6. 6.
    M. Pirhashemi, A. Habibi-Yangjeh, J. Colloid Interface Sci. 491, 216 (2017)CrossRefGoogle Scholar
  7. 7.
    M. Pirhashemi, A. Habibi-Yangjeh, S. Rahim Pouran, J. Ind. Eng. Chem. 62, 1 (2018)CrossRefGoogle Scholar
  8. 8.
    M. Pirhashemi, A. Habibi-Yangjeh, Sep. Purif. Technol. 193, 69 (2018)CrossRefGoogle Scholar
  9. 9.
    X.F. Zhao, L. Wang, X. Xu, X.D. Lei, S.L. Xu, F.Z. Zhang, AIChE J. 58, 573 (2012)CrossRefGoogle Scholar
  10. 10.
    L. Zhang, J. Yana, M. Zhou, Y. Yang, Y. Liu, Appl. Surf. Sci. 268, 237 (2013)CrossRefGoogle Scholar
  11. 11.
    Z. Li, S. Zhang, W.E. Lee, J. Eur. Ceram. Soc. 27, 3407 (2007)CrossRefGoogle Scholar
  12. 12.
    L. Zou, F. Li, X. Xiang, D.G. Evans, X. Duan, Chem. Mater. 18, 5852 (2006)CrossRefGoogle Scholar
  13. 13.
    X. Wei, D. Chen, Mater. Lett. 60, 823 (2006)CrossRefGoogle Scholar
  14. 14.
    S. Farhadi, S. Panahandehjoo, Appl. Catal. A 382, 293 (2010)CrossRefGoogle Scholar
  15. 15.
    L. Gama, M.A. Ribeiro, B.S. Barros, R.H.A. Kiminami, I.T. Weber, A.C.F.M. Costa, J. Alloys Compd. 483, 453 (2009)CrossRefGoogle Scholar
  16. 16.
    L. Chen, X. Sun, Y. Liu, K. Zhou, Y. Li, J. Alloys Compd. 376, 257 (2004)CrossRefGoogle Scholar
  17. 17.
    Z. Zhu, X. Li, Q. Zhao, S. Liu, X. Hu, G. Chen, Mater. Lett. 65, 194 (2011)CrossRefGoogle Scholar
  18. 18.
    M. Zawadzki, Solid State Sci. 8, 14 (2006)CrossRefGoogle Scholar
  19. 19.
    D. Li, Y. Fan, Y. Ding, X. Wei, Y. Xiao, Catal. Commun. 88, 60 (2017)CrossRefGoogle Scholar
  20. 20.
    X. Li, J. Liu, X. Ji, J. Jiang, R. Ding, Y. Hu, A. Hu, X. Huang, Sens. Actuators B 147, 241 (2010)CrossRefGoogle Scholar
  21. 21.
    H. Zhang, L. Yina, X. Liu, R. Weng, Y. Wang, Z. Wu, Appl. Surf. Sci. 380, 178 (2016)CrossRefGoogle Scholar
  22. 22.
    Y. Kuang, L. Zhao, S. Zhang, F. Zhang, M. Dong, S. Xu, Materials 3, 5220 (2010)CrossRefGoogle Scholar
  23. 23.
    T. Kameda, M. Saito, Y. Umetsu, Mater. Trans. 47, 923 (2006)CrossRefGoogle Scholar
  24. 24.
    G.B. Sun, L.N. Sun, H. Wen, Z.Q. Jia, K.L. Huang, C.W. Hu, J. Phys. Chem. B 110, 13375 (2006)CrossRefGoogle Scholar
  25. 25.
    J. Song, M. Leng, X. Fu, J. Liu, J. Alloys Compd. 543, 142 (2012)CrossRefGoogle Scholar
  26. 26.
    V. Rives, M. Arco, C. Martín, Appl. Clay Sci. 88, 239 (2014)CrossRefGoogle Scholar
  27. 27.
    J.R. Ebdon, B. Hunt, P.J. Joseph, Polym. Degrad. Stab. 83, 181 (2004)CrossRefGoogle Scholar
  28. 28.
    S.B. Eshwaran, D. Basu, S.R. Vaikuntam, B. Kutlu, S. Wiessner, A. Das, K. Naskar, G. Heinrich, J. Appl. Polym. Sci. 132, 41539 (2015)Google Scholar
  29. 29.
    F.R. Costa, A. Leuteritz, U. Wagenknecht, D. Jehnichen, L. Haußler, G. Heinrich, Appl. Clay Sci. 38, 153 (2007)CrossRefGoogle Scholar
  30. 30.
    Y. Imai, Y. Inukai, H. Tateyama, Polym. J. 35, 230 (2003)CrossRefGoogle Scholar
  31. 31.
    P.C. LeBaron, T.J. Pinnavaia, Chem. Mater. 13, 3760 (2001)CrossRefGoogle Scholar
  32. 32.
    S.S.L. Sobhana, D.R. Bogati, M. Reza, J. Gustafsson, P. Fardim, Microporous Mesoporous Mater. 225, 66 (2016)CrossRefGoogle Scholar
  33. 33.
    E. Geraud, V. Prevot, F. Leroux, J. Phys. Chem. Solids 67, 903 (2006)CrossRefGoogle Scholar
  34. 34.
    G. Liu, X. Li, J. Zhao, H. Hidaka, N. Serpone, Environ. Sci. Technol. 34, 3982 (2000)CrossRefGoogle Scholar
  35. 35.
    G.L. Baughman, E.J. Weber, Environ. Sci. Technol. 28, 267 (1994)CrossRefGoogle Scholar
  36. 36.
    R. Comparelli, E. Fanizza, M.L. Curri, P.D. Cozzoli, G. Mascolo, A. Agostiano, Appl. Catal. B 60, 1 (2005)CrossRefGoogle Scholar
  37. 37.
    S. Liao, H. Donggen, D. Yu, Y. Su, G. Yuan, J. Photochem. Photobiol. 168, 7 (2004)CrossRefGoogle Scholar
  38. 38.
    S.K. Kansal, M. Singh, D. Sud, J. Hazard. Mater. 141, 581 (2007)CrossRefGoogle Scholar
  39. 39.
    L. Wu, J.C. Yu, X. Fu, J. Mol. Catal. A 244, 25 (2006)CrossRefGoogle Scholar
  40. 40.
    K. Abderrazek, F.S. Najoua, E. Srasra, Appl. Clay Sci. 119, 229 (2016)CrossRefGoogle Scholar
  41. 41.
    R. Huo, Y. Kuang, Z. Zhao, F. Zhang, S. Xu, J. Colloid Interface Sci. 407, 17 (2013)CrossRefGoogle Scholar
  42. 42.
    Y. Guo, D. Li, C. Hu, Y.Wang,E. Wang, Y. Zhou, S. Feng, Appl. Catal. B 30, 337 (2001)CrossRefGoogle Scholar
  43. 43.
    E.M. Seftel, E. Popovici, M. Mertens, K. DeWitte, G.V. Tendeloo, P. Cool, E.F. Vansant, Microporous Mesoporous Mater. 113, 296 (2008)CrossRefGoogle Scholar
  44. 44.
    D.Carriazo, M. Del Arco, E. Garcia-Lopez, G. Marci, C. Martin, L. Palmisano, V. Rives, J. Mol. Catal. A 342, 83 (2011)CrossRefGoogle Scholar
  45. 45.
    S. Milica, J.H. Tatjana, B.V. Dmitar, P.Z. Radmila, M. Nedučin, Chem. Ind. Chem. Eng. Q. 18, 295 (2012)Google Scholar
  46. 46.
    D. Meloni, R. Monaci, V. Solinas, A. Auroux, E. Dumitriu, Appl. Catal. A 350, 86 (2008)CrossRefGoogle Scholar
  47. 47.
    H. Cui, Y. Zhou, J. Mei, Z. Li, S. Xu, C. Yao, J. Phys. Chem. Solids 112, 80 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemistry, College of Arts and SciencePrince Sattam Bin Abdulaziz UniversityWadi Al-DawasirSaudi Arabia
  2. 2.Department of Electrical Engineering, College of EngineeringPrince Sattam Bin Abdulaziz UniversityWadi Al-DawasirSaudi Arabia

Personalised recommendations