Tailoring the band gap of ferroelectric YMnO3 through tuning the Os doping level

  • O. PolatEmail author
  • F. M. Coskun
  • M. Coskun
  • Z. Durmus
  • Y. Caglar
  • M. Caglar
  • A. Turut


Perovskite-oxide materials have grabbed enormous attention from various research groups all over the world due to their large application areas. The band-gap engineering of those materials are important for optoelectronic researches especially for ferroelectric (FE) solar cells that have unique features such as having higher open circuit voltages than the band gap and their spontaneous polarization which leads to photovoltaic effect. Nevertheless, the most of the perovskite FE materials have wide band gaps that hamper the absorption of large solar spectrum. In the present study, it has been demonstrated the band gap of YMnO3 (YMO), which is one of the mostly studied FE materials, can be tuned via doping osmium (Os) into manganese (Mn) site. The band gap of YMO, 2.10 eV successfully is lowered to 1.61 eV. Polycrystalline YMnO3 and YMn1−xOsxO3 (YMOO) (x = 0.01, 0.05, 0.10) thin films were synthesized on indium tin oxide (ITO) substrates at 500 °C by magnetron sputtering method. Their structural, chemical and optical band-gap properties were studied and the results showed the Os doped YMO compounds could be a potential candidate for future ferroelectric solar cell studies.



This work was supported by The Scientific and Technological Research Council of Turkey (TUBITAK) through Grant No. 116F025.


  1. 1.
    Y. Kato, Y. Kaneko, H. Tanaka, K. Kaibara, S. Koyama, K. Isogai, T. Yamada, Y. Shimada, Overview and future challenge of ferroelectric random access memory technologies. Jpn. J. Appl. Phys. 46, 2157 (2007)CrossRefGoogle Scholar
  2. 2.
    K. Rida, A. Benabbas, F. Bouremmad, M.A. Pen, E. Sastre, A.A. Martinez, Effect of strontium and cerium doping on the structural characteristics and catalytic activity for C3H6 combustion of perovskite LaCrO3 prepared by sole gel. Appl. Catal. B 84, 457–467 (2008)CrossRefGoogle Scholar
  3. 3.
    D. Maurya, C.W. Ahn, S. Zhang, S. Priy, High dielectric composition in the system Sn-modified (1−x)BaTiO3−xBa(Cu1/3Nb2/3)O3, x = 0.025 for multilayer ceramic capacitors. J. Am. Ceram. Soc. 93(5), 1225–1228 (2010)Google Scholar
  4. 4.
    Z. Zhang, Y. Chen, M.O. Tade, Y. Hao, S. Liu, Z. Shao, Tin-doped perovskite mixed conducting membrane for efficient air separation. J. Mater. Chem. A 2, 9666–9674 (2014)CrossRefGoogle Scholar
  5. 5.
    K. Hilpert, R.W. Steinbrech, F. Boroomand, E. Wessel, F. Meschke, A. Zuev, O. Teller, H. Nickel, L. Singheiser, Defect formation and mechanical stability of perovskites based on LaCrO3 for solid oxide fuel cells (SOFC). J. Eur. Ceram. Soc. 23, 3009–3020 (2003)CrossRefGoogle Scholar
  6. 6.
    M.A. Andrianov, V.L. Balkevich, V.E. Sotnikov, Use of lanthanum chromite for making electric heaters. Refractories 21, 592–596 (1980)CrossRefGoogle Scholar
  7. 7.
    S. Halder, S. Sheikh Md, B. Ghosh, T.P. Sinha, Electronic structure and electrical conduction by polaron hopping mechanism in A2LuTaO6 (A = Ba, Sr, Ca) double perovskite oxides. Ceram. Int. 43, 11097–11108 (2017)CrossRefGoogle Scholar
  8. 8.
    Y. Wang, Y. Sun, J. Zhang, Z. Ci, Z. Zhang, L. Wang, New red Y0.85 Bi0.1Eu0.05V1−yMyO4 (M = Nb, P) phosphors for light-emitting diodes. Physica B 403, 2071–2075 (2008)CrossRefGoogle Scholar
  9. 9.
    Z. Lu, L. Chen, Y. Tang, Y. Li, Preparation and luminescence properties of Eu 3+-doped MSnO3 (M = Ca, Sr and Ba) perovskite materials. J. Alloys Compd. 387, L1–L4 (2005)CrossRefGoogle Scholar
  10. 10.
    P.S. Pizani, E.R. Leite, F.M. Pontes, E.C. Paris, J.H. Rangel, E.J.H. Lee, E. Longo, P. Delega, J.A. Varela, Photoluminescence of disordered ABO3 perovskites. Appl. Phys. Lett. 77, 824 (2000)CrossRefGoogle Scholar
  11. 11.
    T. Arima, Y. Tokura, Variation of optical gaps in perovskite-type Bd transition-metal oxides. Phys. Rev. B 48(23), 17006 (1993)CrossRefGoogle Scholar
  12. 12.
    S.C. Woo, F.C. Matthew, J.S. David, C. Taekjib, E.J. Gerald Jr., N.L. Ho, Wide bandgap tunability in complex transition metal oxides by site-specific substitution. Nat. Commun. 3, 689 (2012). CrossRefGoogle Scholar
  13. 13.
    G. Ilya, V.D. West, T. Maria, G. Gaoyang, M.S. David, W. Liyan, C. Guannan, M.G. Eric, R.A. Andrew, K.D. Peter, E.S. Jonathan, M.R. Andrew, Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials. Nature 503, 509–512 (2013)CrossRefGoogle Scholar
  14. 14.
    F.D. Quarto, M.C. Romano, M. Santamaria, S. Piazza, C. Sunseri, A semiempirical correlation between the optical band gap of hydroxides and the electronegativity of their constituents. Russ. J. Electrochem. 36(11), 1203–1208 (2000)CrossRefGoogle Scholar
  15. 15.
    S. Lee, R.D. Levi, W. Qu, S.C. Lee, C.A. Clive, Band-gap nonlinearity in perovskite structured solid solutions. J. Appl. Phys. 107, 023523 (2010)CrossRefGoogle Scholar
  16. 16.
    X. Xiao, H. Chenguo, G. Donglin, H. Hao, L. Tengjiao, J. Peng, Room temperature magnetic properties of Fe/Co-doped barium niobate crystals. J. Phys. Chem. C 116, 23041–23046 (2012)CrossRefGoogle Scholar
  17. 17.
    Y. Yupeng, Z. Zongyan, Z. Jing, Y. Ming, Q. Lingguang, L. Zhaosheng, Z. Zhigang, Polymerizable complex synthesis of BaZr1−xSnxO3 photocatalysts: role of Sn4+ in the band structure and their photocatalytic water splitting activities. J. Mater. Chem. 20, 6772–6779 (2010)CrossRefGoogle Scholar
  18. 18.
    Z. Wenliang, D. Hongmei, Y. Lu, Y. Pingxiong, C. Junhao, Optical band-gap narrowing in perovskite ferroelectric ABO3 ceramics (A = Pb, Ba; B = Ti) by ion substitution technique. Ceram. Int. 41, 13389–13392 (2015)CrossRefGoogle Scholar
  19. 19.
    F. Ludtke, N. Waasem, K. Buse, B. Sturman, Light-induced charge-transport in undoped LiNbO3 crystals. Appl. Phys. B 105, 35–50 (2011)CrossRefGoogle Scholar
  20. 20.
    G. Chanussot, V. Fridkin, G. Godefroy, B. Jannot, The photoinduced Rayleigh scattering in BaTiO3 crystals showing the bulk photovoltaic effect. Appl. Phys. Lett. 31, 3–5 (1977)CrossRefGoogle Scholar
  21. 21.
    W.S. Choi, M.F. Chisholm, D.J. Singh, T. Choi, G.E. Jellison Jr., H.N. Lee, Wide bandgap tunability in complex transition metal oxides by site-specific substitution. Nat. Commun. 3, 689 (2012)CrossRefGoogle Scholar
  22. 22.
    I. Grinberg, D.V. West, M. Torres, G. Gou, D.M. Stein, L. Wu, G. Chen, E.M. Gallo, A.R. Akbashev, P.K. Davies, J.E. Spanier, A.M. Rappe, Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials. Nature 503, 509–512 (2013)CrossRefGoogle Scholar
  23. 23.
    L. Qiao, S. Zhang, H.Y. Xiao, D.J. Singh, K.H.L. Zhang, Z.J. Liu, X.T. Zu, S. Li, Orbital controlled band gap engineering of tetragonal BiFeO3 for optoelectronic applications. J. Mater. Chem. C 5, 1239–1247 (2018)CrossRefGoogle Scholar
  24. 24.
    R. Nechachel, C. Harnagea, L.-P. Carignan, O. Gautreau, L. Pintilie, M.P. Singh, D. Ménard, P. Fournier, M. Alexe, A. Pignolet, Epitaxial thin films of the multiferroic double perovskite Bi2FeCrO6 grown on (100)-oriented SrTiO3 substrates: growth, characterization, and optimization. J. Appl. Phys. 105, 061621 (2009)CrossRefGoogle Scholar
  25. 25.
    X.S. Xu, J.F. Ihlefeld, J.H. Lee, O.K. Ezekoye, E. Vlahos, R. Ramesh, V. Gopalan, X.Q. Pan, D.G. Schlom, J.L. Musfeldt, Tunable band gap in Bi(Fe1−xMnx)O3 films. Appl. Phys. Lett. 96, 192901 (2010)CrossRefGoogle Scholar
  26. 26.
    I.G. Ismailzade, S.A. Kizhaev, Determination of the curie point of the ferroelectrics YMnO3 and YbMnO3. Sov. Phys. Solid State 7, 236 (1965)Google Scholar
  27. 27.
    G. Smolenskii, I. Chupis, Ferroelectromagnets. Sov. Phys. Usp. 25, 475 (1982)CrossRefGoogle Scholar
  28. 28.
    Z.J. Huang, Y. Cao, Y.Y. Sun, Y.Y. Xue, C.W. Chu, Coupling between the ferroelectric and antiferromagnetic orders in YMnO3. Phys. Rev. B 56, 2623 (1997)CrossRefGoogle Scholar
  29. 29.
    M. Fiebig, Th Lottermoser, D. Fröhlich, A.V. Goltsev, R.V. Pisarev, Observation of coupled magnetic and electric domains. Nature 419, 818 (2002)CrossRefGoogle Scholar
  30. 30.
    S. Lee, A. Pirogov, J.H. Han, J.-G. Park, A. Hoshikawa, T. Kamiyama, Direct observation of a coupling between spin, lattice and electric dipole moment in multiferroic YMnO3. Phys. Rev. B 71, 1804138 (2005)Google Scholar
  31. 31.
    A.V. Goltsev, R.V. Pisarev, T. Lottermoser, M. Fiebig, Structure and interaction of antiferromagnetic domain walls in hexagonal YMnO3. Phys. Rev. Lett. 90(17), 177204 (2003)CrossRefGoogle Scholar
  32. 32.
    S.H. Kim, S.H. Lee, T.H. Kim, T. Zyung, Y.H. Jeong, M.S. Jang, Growth, ferroelectric properties, and phonon modes of YMnO3 single crystal. Cryst. Res. Technol. 35, 19–27 (2000)CrossRefGoogle Scholar
  33. 33.
    N. Fujimura, S.I. Azuma, N. Aoki, T. Yoshimura, T. Ito, Growth mechanism of YMnO3 film as a new candidate for nonvolatile memory devices. J. Appl. Phys. 80, 7084 (1996)CrossRefGoogle Scholar
  34. 34.
    N. Fujimura, T. Ishida, T. Yoshimura, T. Ito, Epitaxially grown YMnO3 film: new candidate for nonvolatile memory devices. Appl. Phys. Lett. 69, 1011 (1996)CrossRefGoogle Scholar
  35. 35.
    J.K. Choi, W.C. Shin, S.G. Yoon, Ferroelectric YMnO3 thin films grown by metal-organic chemical vapor deposition for metal/ferroelectric/semiconductor field-effect transistors. Thin Solid Films 384, 146 (2001)CrossRefGoogle Scholar
  36. 36.
    D. Ito, N. Fujimura, T. Yoshimura, T. Ito, Ferroelectric properties of YMnO3 epitaxial films for ferroelectric-gate field-effect transistors. J. Appl. Phys. 93, 5563 (2003)CrossRefGoogle Scholar
  37. 37.
    P. Murugavel, P. Padhan, W. Prellier, Enhanced magnetoresistance in ferromagnetic Pr0.85Ca0.15MnO3/ferroelectric Ba0.6Sr0.4TiO3 superlattice films. Appl. Phys. Lett. 85, 4992 (2004)CrossRefGoogle Scholar
  38. 38.
    T. Lottermoser, T. Lonkai, U. Amann, D. Hohlwein, J. Ihringer, M. Fiebig, Magnetic phase control by an electric field. Nature 430, 541 (2004)CrossRefGoogle Scholar
  39. 39.
    H. Zheng, J. Wang, S.E. Lofland, Z. Ma, L. Mohaddes-Ardabili, T. Zhao, L. Salamanca-Riba, S.R. Shinde, S.B. Ogale, F. Bai, D. Viehland, Y. Jia, D.G. Schlom, M. Wuttig, A. Roytburd, R. Ramesh, Multiferroic BaTiO3-CoFe2O4 nanostructures. Science 303, 661 (2004)CrossRefGoogle Scholar
  40. 40.
    N.A. Spaldin, M. Fiebig, The renaissance of magnetoelectric multiferroics. Science 309, 391 (2005)CrossRefGoogle Scholar
  41. 41.
    S.X. Dong, J.Y. Zhai, N.G. Wang, F.M. Bai, J.F. Li, D. Vieland, T.A. Lograsso, Fe–Ga/Pb(Mg1∕3 Nb2∕3)O3–PbTiO3 magnetoelectric laminate composites. Appl. Phys. Lett. 87, 222504 (2005)CrossRefGoogle Scholar
  42. 42.
    N.G. Wang, J. Cheng, A. Pyatakov, A.K. Zvezdin, J.F. Li, L.E. Cross, D. Vieland, Multiferroic properties of modified BiFeO3–PbTiO3-based ceramics: Random-field induced release of latent magnetization and polarization. Phys. Rev. B 72, 104434 (2005)CrossRefGoogle Scholar
  43. 43.
    K. Kritayakirana, P. Berger, R.V. Jones, Optical spectra of ferroelectric-antiferromagnetic rare earth manganates. Opt. Commun. 1, 95 (1969)CrossRefGoogle Scholar
  44. 44.
    J.E. Medvedeva, V.I. Anisimov, M.A. Korotin, O.N. Mryasov, A.J. Freeman, The effect of Coulomb correlation and magnetic ordering on the electronic structure of two hexagonal phases of ferroelectromagnetic YMnO3. J. Phys. 12, 4947 (2000)Google Scholar
  45. 45.
    A.M. Kalashnikova, R.V. Pisarev, Electronic structure of hexagonal rare-earth manganites RMnO3. JETP Lett. 78, 143 (2003)CrossRefGoogle Scholar
  46. 46.
    H. Han, S. Song, J.H. Lee, K.J. Kim, G.-W. Kim, T. Park, H.M. Jang, Switchable photovoltaic effects in hexagonal manganite thin films having narrow band gaps. Chem. Mater. 27(21), 7425–7432 (2015)CrossRefGoogle Scholar
  47. 47.
    S.F. Wang, H. Yang, T. Xian, X.Q. Liu (2011) Size-controlled synthesis and photocatalytic properties of YMnO3 nanoparticles. Catal. Commun. 12, 625–628CrossRefGoogle Scholar
  48. 48.
    O. Polat, M. Coskun, F.M. Coskun, Z. Durmus, M. Caglar, A. Turut, Os doped YMnO3 multiferroic: A study investigating the electrical properties through tuning the doping level. J. Alloy Compd. 752, 274–288 (2018)CrossRefGoogle Scholar
  49. 49.
    O. Polat, Z. Durmus, F.M. Coskun, M. Coskun, A. Turut, Engineering the band gap of LaCrO3 doping with transition metals (Co, Pd and Ir). J. Mater. Sci. 53, 3544–3556 (2018)CrossRefGoogle Scholar
  50. 50.
    Abo El Ata A.M., S.M. Attia, T.M. Meaz, AC conductivity and dielectric behavior of CoAlxFe2–xO4. Solid State Sci. 6, 61–69 (2004)CrossRefGoogle Scholar
  51. 51.
    V.D. Nithya, R.J. Immanuel, S.T. Senthilkumar, C. Sanjeeviraja, I. Perelshtein, D. Zitoun, R.K. Selvan, Studies on the structural, electrical and magnetic properties of LaCrO3, LaCr0.5Cu0.5O3 and LaCr0.5Fe0.5O3 by sol–gel method. Mater. Res. Bull. 47, 1861–1868 (2012)CrossRefGoogle Scholar
  52. 52.
    F. Wan, X. Lin, X. Bai, X. Han, K. Song, J. Zheng, C. Cao, Crystalline structure and dielectric properties of multiferroics Cr-doped YMnO3. J. Mater. Sci. 27, 3082–3087 (2016)Google Scholar
  53. 53.
    P.R. Mandal, T.K. Nath, Oxygen-vacancy and charge hopping related dielectric relaxation and conduction process in orthorhombic Gd doped YFe0.6Mn0.4O3 multiferroics. J. Alloys Compd. 628, 379–389 (2015)CrossRefGoogle Scholar
  54. 54.
    J. Hua, L. Wang, L. Shi, H. Huang, Oxygen reduction reaction activity of LaMn1−xCoxO3-graphene nanocomposite for zinc-air battery. Electrochim. Acta 161, 115–123 (2015)CrossRefGoogle Scholar
  55. 55.
    F. Hao, J. Du, X.P. Han, F.Y. Cheng, Sol-gel synthesis of perovskite La1−xCaxMnO3 (x = 0–0.4) nanoparticles for electro catalytic oxygen reduction. Chin. J. Inorg. Chem. 29, 1617 (2013)Google Scholar
  56. 56.
    C. Zhanga, J. Su, X. Wang, F. Huang, J. Zhang, Y. Liu, L. Zhang, K. Min, Z. Wang, X. Lua, F. Yanc, J. Zhu, Study on magnetic and dielectric properties of YMnO3 ceramics. J. Alloys Compd. 509, 7738–7741 (2011)CrossRefGoogle Scholar
  57. 57.
    F. Wan, X. Lin, X. Bai, X. Han, K. Song, J. Zheng, C. Cao, Crystalline structure and dielectric properties of multiferroic Cr-doped YMnO3. J. Mater. Sci. 27, 3082–3087 (2016)Google Scholar
  58. 58.
    P.R. Ren, H.Q. Fan, X. Wang, Bulk conduction and nonlinear behaviour in multiferroic YMnO3. Appl. Phys. Lett. 103, 152905 (2013)CrossRefGoogle Scholar
  59. 59.
    A.G. Kochura, A.T. Kozakov, K.A. Googlev, A.V. Nikolskii, X-ray photoelectron study of temperature effect on the valence state of Mn in single crystal YMnO3. J. Electron Spectrosc. Relat. Phenom. 195, 1–7 (2014)CrossRefGoogle Scholar
  60. 60.
    A.G. Kochura, A.T. Kozakov, A.V. Nikolskii, K.A. Googlev, A.V. Pavlenko, I.A. Verbenko, L.A. Reznichenko, T.I. Krasnenko, Valence state of the manganese ions in mixed-valence La1−αBiβMn1 + δO3 ± γ ceramics by Mn 2p and Mn 3 s X-ray photoelectron spectra. J. Electron Spectrosc. Relat. Phenom. 185, 175–183 (2012)CrossRefGoogle Scholar
  61. 61.
    V.A. Khomchenko, I.O. Troyanchuk, O.S. Mantytskaya, M. Tovar, H. Szymczak, Crystalline and magnetic structures of La1−xBixMnO3+δ manganites. J. Exp. Theor. Phys. 103, 54–59 (2006)CrossRefGoogle Scholar
  62. 62.
    A. Pal, P. Murugavel, Impact of cationic vacancies on the physical characteristics of multiferroic GdMnO3. J. Appl. Phys. 123, 234102 (2018)CrossRefGoogle Scholar
  63. 63.
    M. Naeem, S.K. Hasanain, M. Kobayashi, Y. Ishida, A. Fujimori, S. Buzby, S. Ismat Shah, Effect of reducing atmosphere on the magnetism of Zn1−xCoxO (0 ≤ x ≤ 0.10) nanoparticles. Nanotechnology 17, 2675 (2006)CrossRefGoogle Scholar
  64. 64.
    R.X. Liu, H. Iddir, Q.B. Fan, G.Y. Hou, A.L. Bo, K.L. Ley, E.S. Smotkin, Y.E. Sung, H. Kim, S. Thomas, A. Wieckowski, Potential-dependent infrared absorption spectroscopy of adsorbed CO and X-ray photoelectron spectroscopy of arc-melted single-phase Pt, PtRu, PtOs, PtRuOs, and Ru electrodes. J. Phys. Chem. B 104, 3518 (2000)CrossRefGoogle Scholar
  65. 65.
    Y.M. Zhu, C.R. Cabrera, Methanol oxidation at the electrochemical Co deposited Pt-Os composite electrode. Electrochem. Solid-State Lett. 4, A45 (2001)CrossRefGoogle Scholar
  66. 66.
    A. Pitto-Barry, L.M.A. Perdigao, M. Walker, J. Lawrence, G. Costantini, P.J. Sadler, N.P.E. Barry, Synthesis and controlled growth of osmium nanoparticles by electron irradiation. Dalton Trans. 44, 20308–20311 (2015)CrossRefGoogle Scholar
  67. 67.
    A.F. Lima, M.V. Lalic, Optical absorption spectrum and electronic structure of multiferroic hexagonal YMnO3 compound. Opt. Mater. 64, 406–412 (2017)CrossRefGoogle Scholar
  68. 68.
    Q. Yang, Z. Zhou, N.X. Sun, M. Liu, Perspectives of voltage control for magnetic exchange bias in multiferroic heterostructures. Phys. Lett. A 381, 1213–1222 (2017)CrossRefGoogle Scholar
  69. 69.
    W.S. Choi, D.G. Kim, S.S.A. Seo, S.J. Moon, D. Lee, J.H. Lee, H.S. Lee, D.Y. Cho, Y.S. Lee, P. Murugavel, J. Yu, T.W. Noh, Electronic structures of hexagonal RMnO(3) (R = Gd, Tb, Dy, and Ho) thin films: optical spectroscopy and first-principles calculations. Phys. Rev. B 77, 045137 (2008)CrossRefGoogle Scholar
  70. 70.
    D. Gutiérrez, O. Peña, K. Ghanimi, P. Durán, C. Moure, Electrical and magnetic features in the perovskite-type system Y(Co, Mn)O3. J. Phys. Chem. Solids 63, 1975–1982 (2002)CrossRefGoogle Scholar
  71. 71.
    C. Bharti, T.P. Sinha, Structural and ac electrical properties of a newly synthesized single phase rare earth double perovskite oxide: Ba2CeNbO6. Physica B 406, 1827–1832 (2011)CrossRefGoogle Scholar
  72. 72.
    J. Wang, Z. Wang, B. Huang, Y. Ma, Y. Liu, X. Qin, X. Zhang, Y. Dai, Oxygen vacancy induced band-gap narrowing and enhanced visible light photocatalytic activity of ZnO. ACS Appl. Mater. Interfaces 4, 4024–4030 (2012)CrossRefGoogle Scholar
  73. 73.
    A.J. Hauser, J. Zhang, L. Mier, R.A. Ricciardo, P.M. Woodward, T.L. Gustafson, L.J. Brillson, F.Y. Yang, Characterization of electronic structure and defect states of thin epitaxial BiFeO3 films by UV-visible absorption and cathodoluminescence spectroscopies. Appl. Phys. Lett. 92, 222901 (2008)CrossRefGoogle Scholar
  74. 74.
    S.J. Clark, J. Robertson, Energy levels of oxygen vacancies in BiFeO3 by screened exchange. Appl. Phys. Lett. 94, 022902 (2009)CrossRefGoogle Scholar
  75. 75.
    W.-M. Lee, J.H. Sung, K. Chu. X. Moya, D. Lee, C.-J. Kim, N.D. Mathur, S.-W. Cheong, C.-H. Yang, M.-H. Jo, Spatially resolved photodetection in leaky ferroelectric BiFeO3. Adv. Mater. 24, OP49–OP53 (2012)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • O. Polat
    • 1
    • 2
    Email author
  • F. M. Coskun
    • 3
  • M. Coskun
    • 3
  • Z. Durmus
    • 4
  • Y. Caglar
    • 5
  • M. Caglar
    • 5
  • A. Turut
    • 3
  1. 1.CEITEC BUT, Brno University of TechnologyBrnoCzech Republic
  2. 2.Institute of Physical EngineeringBrno University of TechnologyBrnoCzech Republic
  3. 3.Department of Engineering Physics, Faculty of Engineering and Natural SciencesIstanbul Medeniyet UniversityUskudar, IstanbulTurkey
  4. 4.Bağlar Mah., Gunesli KonutlarBagcilar, IstanbulTurkey
  5. 5.Faculty of Science, Department of PhysicsEskisehir Technical UniversityEskisehirTurkey

Personalised recommendations