Advertisement

Engineering an aptamer-based recognition sensor for electrochemical opium alkaloid biosensing

  • Azadeh AzadbakhtEmail author
  • Amir Reza Abbasi
Article
  • 27 Downloads

Abstract

Here we propose an electrochemical aptamer-based sensing strategy for sensitive detection of the codeine (COD). Platform construction was started by decoration NH2-functionalized Fe3O4 with gold nanoparticles (Fe3O4/AuNPs). Carbon nanotubes were then placed on a glassy carbon electrode and decorated with the Fe3O4/AuNPs to serve as a signal amplifier (Fe3O4/AuNPs/CNTs/GC). The proposed nanoaptasensor integrated the merits of the deposition of Fe3O4/AuNPs and CNTs and the covalent attachment of the detection probe at the surface of platform. In this concept, COD was captured at the surface of sensing interface due to the specific binding of aptamer and COD, which led to COD detection. The long tunnels on modified electrode surface were formed owning to the attachment of COD-aptamer at the surface of sensor, while aptamer acted as gate of the tunnels. The change in conformation of aptamer upon target binding caused the closure of aptamer gate. Coupling the “Off–On” electrochemical switching properties of the aptamer modified electrode with inherent capabilities of nanocomposite led to high sensitivity, simplicity, stability and reproducibility of aptasensor. The assay has a 3.2 pM detection limit, and the response is linear up to 900 nM concentration of COD.

Notes

Acknowledgements

The authors gratefully acknowledge the support of this work by the Khorramabad Branch, Islamic Azad University for financial support.

References

  1. 1.
    M.A. Zayed, M.F. El-shahat, S.M. Abdullah, The use of IR, magnetism, reflectance, and mass spectra together with thermal analyses in structure investigation of codeine phosphate complexes of d-block elements. Spectrochim. Acta A 61, 1955–1964 (2005)CrossRefGoogle Scholar
  2. 2.
    J.M.P.J. Garrido, C. Delerue-Matos, F. Borges, T.R.A. Macedo, A.M. Oliveira-Brett, Voltammetric oxidation of drugs of abuse: II. Codeine and metabolites. Electroanalysis 16, 1427–1433 (2004)CrossRefGoogle Scholar
  3. 3.
    L. Svorc, J. Sochr, P. Tomcik, M. Rievaj, D. Bustin, Simultaneous determination of paracetamol and penicillin V by square-wave voltammetry at a bare boron-doped diamond electrode. Electrochim. Acta 68, 227–234 (2012)CrossRefGoogle Scholar
  4. 4.
    S. Chericoni, F. Stefanelli, V. Iannella, M. Giusiani, Simultaneous determination of morphine, codeine and 6-acetylmorphine in human urine and blood samples using direct aqueous derivatization: validation and application to real cases. J. Chromatogr. B 949–950, 127–132 (2014)CrossRefGoogle Scholar
  5. 5.
    H. Andresen, A. Schmoldt, Does the consumption of poppy seeds lead to positive opiate-test results in urine, blood and hair? Blutalkohol 41, 191–202 (2004)Google Scholar
  6. 6.
    V. Hill, T. Cairns, C.C. Cheng, M. Schaffer, Multiple aspects of hair analysis for opiates: methodology, clinical and workplace populations, codeine, and poppy seed ingestion. J. Anal. Toxicol. 29, 696–703 (2005)CrossRefGoogle Scholar
  7. 7.
    K. Yoshimatsu, F. Kiuchi, K. Shimomura, Y. Makino, A rapid and reliable solid-phase extraction method for high-performance liquid chromatographic analysis of opium alkaloids from papaver plants. Chem. Pharm. Bull. 53, 1446–1450 (2005)CrossRefGoogle Scholar
  8. 8.
    H.N. ElSohly, M.A. ElSohly, D.F. Stanford, Poppy seed ingestion and opiates urinalysis: a closer look. J. Anal. Toxicol. 14, 308–310 (1990)CrossRefGoogle Scholar
  9. 9.
    A. Campean, M. Tertis, R. Sandulescu, Voltammetric determination of some alkaloids and other compounds in pharmaceuticals and urine using an electrochemically activated glassy carbon electrode. Cent. Eur. J. Chem. 9, 688–700 (2011)CrossRefGoogle Scholar
  10. 10.
    M.H. Pournaghi-Azar, S. Kheradmandi, A. Saadatirad, Simultaneous voltammetry of paracetamol, ascorbic acid, and codeine on a palladium-plated aluminum electrode: oxidation pathway and kinetics, J. Solid. State. Electron. 14, 1689–1695 (2010)CrossRefGoogle Scholar
  11. 11.
    M. Taei, H. Salavati, F. Hasanpour, S. Habibollahi, H. Baghlani, Simultaneous determination of ascorbic acid, acetaminophen and codeine based on multi-walled carbon nanotubes modified with magnetic nanoparticles paste electrode. Mat. Sci. Eng. C 69, 1–11 (2016)CrossRefGoogle Scholar
  12. 12.
    F. Li, J. Song, D. Gao, Q. Zhang, D. Han, L. Niu, Simple and rapid voltammetric determination of morphine at electrochemically pretreated glassy carbon electrodes. Talanta 79, 845–850 (2009)CrossRefGoogle Scholar
  13. 13.
    M.H. Pournaghi-Azar, A. Saadatirad, Simultaneous voltammetric and amperometric determination of morphine and codeine using a chemically modified-palladized aluminum electrode. J. Electroanal. Chem. 624, 293–298 (2008)CrossRefGoogle Scholar
  14. 14.
    M.H. Pournaghi-Azar, A. Saadatirad, Simultaneous determination of paracetamol, ascorbic acid and codeine by differential pulse voltammetry on the aluminum electrode modified by thin layer of palladium. Electroanalysis 22, 1592–1598 (2010)Google Scholar
  15. 15.
    Y. Li, K. Li, G. Song, J. Liu, K. Zhang, B. Ye, Electrochemical behavior of codeine and its sensitive determination on graphene-based modified electrode. Sens. Actuat. B Chem. 182, 401–407 (2013)CrossRefGoogle Scholar
  16. 16.
    B. Habibi, M. Abazari, M.H. Pournaghi-Azar, Simultaneous determination of codeine and caffeine using single-walled carbon nanotubes modified carbon-ceramic electrode. Colloid. Surf. B 114, 89–95 (2014)CrossRefGoogle Scholar
  17. 17.
    L. Huang, X. Yang, C. Qi, X. Niu, C. Zhao, X. Zhao, D. Shangguan, Y. Yang, A label-free electrochemical biosensor based on a DNA aptamer against codeine. Anal. Chim. Acta 787, 203–210 (2013)CrossRefGoogle Scholar
  18. 18.
    M.Y. Ho, N. Souza, P. Migliorato, Electrochemical aptamer-based sandwich assays for the detection of explosives. Anal. Chem. 84, 4245–4247 (2012)CrossRefGoogle Scholar
  19. 19.
    M.M. Zhao, L.F. Liao, M.L. Wu, Y.W. Lin, X.L. Xiao, C.M. Nie, Double-receptor sandwich supramolecule sensing method for the determination of ATP based on uranyl–salophen complex and aptamer. Biosens. Bioelectron. 34, 106–111 (2012)CrossRefGoogle Scholar
  20. 20.
    M. Zhou, J. Wang, Biofuel cells for self-powered electrochemical biosensing and logic biosensing: a review. Electroanalysis 24, 197–209 (2012)CrossRefGoogle Scholar
  21. 21.
    S.D. Jayasena, Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clin. Chem. 45, 1628–1650 (1999)Google Scholar
  22. 22.
    A. Azadbakht, M. Roushani, A.R. Abbasi, S. Menati, Z. Derikvand, A label-free aptasensor based on polyethyleneimine wrapped carbon nanotubes in situ formed gold nanoparticles as signal probe for highly sensitive detection of dopamine. Mat. Sci. Eng. C 68, 585–593 (2016)CrossRefGoogle Scholar
  23. 23.
    S. Bahrami, A.R. Abbasi, M. Roushani, Z. Derikvand, A. Azadbakht, An electrochemical dopamine aptasensor incorporating silver nanoparticle, functionalized carbon nanotubes and graphene oxide for signal amplification. Talanta 159, 307–316 (2016)CrossRefGoogle Scholar
  24. 24.
    S. Brakmann, DNA-based barcodes, nanoparticles, and nanostructures for the ultrasensitive detection and quantification of proteins. Angew. Chem. Int. Ed. 43, 5730–5734 (2004)CrossRefGoogle Scholar
  25. 25.
    N.L. Rosi, C.A. Mirkin, Nanostructures in biodiagnostics. Chem. Rev. 105, 1547–1562 (2005)CrossRefGoogle Scholar
  26. 26.
    G. Frens, Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat. Phys. Sci. 241, 20–22 (1973)CrossRefGoogle Scholar
  27. 27.
    W.S. Sutherland, J.D. Winefordner, Colloid filtration a novel substrate preparation method for surface enhanced raman spectroscopy. J. Colloid. Interf. Sci. 148, 129–141 (1992)CrossRefGoogle Scholar
  28. 28.
    J. Sun, S.B. Zhou, P. Hou, Y. Yang, J. Weng, X.H. Li, M.Y. Li, Synthesis and characterization of biocompatible Fe3O4 nanoparticles. J. Biomed. Mater. Res. A 80, 333–341 (2007)CrossRefGoogle Scholar
  29. 29.
    D. Peng, R.P. Liang, H. Huang, J.D. Qiu, Electrochemical immunosensor for carcinoembryonic antigen based on signal amplification strategy of graphene and Fe3O4/AuNPs. J. Electroanal. Chem. 761, 112–117 (2016)CrossRefGoogle Scholar
  30. 30.
    S. Guo, S. Dong, E. Wang, A general route to construct diverse multifunctional Fe3O4/metal hybrid nanostructures. Chem. Eur. J. 15, 2416–2424 (2009)CrossRefGoogle Scholar
  31. 31.
    D. Tang, R. Yuan, Y. Chai, Magnetic core–shell Fe3O4@Ag nanoparticles coated carbon paste interface for studies of carcinoembryonic antigen in clinical immunoassay. J. Phys. Chem. B 110, 11640–11646 (2006)CrossRefGoogle Scholar
  32. 32.
    H. Teymourian, A. Salimi, S. Khezrian, Fe3O4 magnetic nanoparticles/reduced graphene oxide nanosheets as a novel electrochemical and bioeletrochemical sensing platform. Biosens. Bioelectron. 49, 1–8 (2013)CrossRefGoogle Scholar
  33. 33.
    A. Salimi, S. Khezrian, R. Hallaj, A. Vaziry, Highly sensitive electrochemical aptasensor for immunoglobulin E detection based on sandwich assay using enzyme-linked aptamer. Anal. Biochem. 466, 89–97 (2014)CrossRefGoogle Scholar
  34. 34.
    A. Shrivastava, V.B. Gupta, Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chron. Young. Sci. 2, 21–25 (2011)CrossRefGoogle Scholar
  35. 35.
    A.M. Santos, T.A. Silva, F.C. Vicentini, O.F. Filho, Flow injection analysis system with electrochemical detection for the simultaneous determination of nanomolar levels of acetaminophen and codeine. Arab. J. Chem.  https://doi.org/10.1016/j.arabjc.2017.04.012
  36. 36.
    L. Svorc, J. Sochr, J. Svitkova, M. Rievaj, D. Bustin, Rapid and sensitive electrochemical determination of codeine in pharmaceutical formulations and human urine using a boron-doped diamond film electrode. Electrochim. Acta 87, 503–510 (2013).CrossRefGoogle Scholar
  37. 37.
    A.A. Ensafi, N. Ahmadi, B. Rezaei, M. Mokhtari Abarghoui, A new electrochemical sensor for the simultaneous determination of acetaminophen and codeine based on porous silicon/palladium nanostructure. Talanta 134, 745–753 (2015)CrossRefGoogle Scholar
  38. 38.
    A. Afkhami, H. Khoshsafar, H. Bagheri, T. Madrakian, Facile simultaneous electrochemical determination of codeine and acetaminophen in pharmaceutical samples and biological fluids by graphene–CoFe2O4 nancomposite modified carbon paste electrode. Sens. Actuat. B, 20, 3909–3918 (2014)Google Scholar
  39. 39.
    Y.Q.A.A. Ensafi, E. Heydari-Bafrooei, B. Rezaei, Different interaction of codeineandmorphine with DNA: a concept for simultaneous determination. Biosens. Bioelectron. 41, 627–633 (2013)CrossRefGoogle Scholar
  40. 40.
    M.H. Mashadizadeh, G. Abdollahi, T. Yousefi, SmHCF/multiwalled carbon nanotube modified glassy carbon electrode for the determination of codeine. J. Electroanal. Chem. 780, 68–74 (2016)CrossRefGoogle Scholar
  41. 41.
    S. Beiranvand, A.R. Abbasi, M. Roushani, Z. Derikvand, A. Azadbakht, A simple and label-free aptasensor based on amino group-functionalized gold nanocomposites-prussian blue/carbon nanotubes as labels for signal amplification, J. Electroanal. Chem. 776, 170–179 (2016)CrossRefGoogle Scholar
  42. 42.
    A. Azadbakht, M. Roushani, A.R. Abbasi, Z. Derikvand, A novel impedimetric aptasensor, based on functionalized carbon nanotubes and prussian blue as labels. Anal. Biochem. 512, 58–69 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Khorramabad BranchIslamic Azad UniversityKhorramabadIran
  2. 2.Faculty of ChemistryRazi UniversityKermanshahIran

Personalised recommendations