Advertisement

Fabrication and optimization of Bi-2212 high temperature superconductors with K and Ag co-incorporation

  • Shengnan ZhangEmail author
  • Xiaobo Ma
  • Lijun Cui
  • Yingjian Huang
  • Xueqian Liu
  • Chengshan Li
  • Jianqing Feng
  • Pingxiang Zhang
Article
  • 9 Downloads

Abstract

Polycrystalline bulks Bi2.1Sr1.96CaKxCu2.0O8+δ + yAg (Bi-2212) with different K incorporation content of x = 0, 0.02, 0.05 and 0.10 and addition of Ag nanoparticles with weight ratio of y = 0.10 wt% were fabricated by a hot-pressing (HP) process. The influences of K+ ions and Ag nanoparticles on the lattice parameters, phase composition, microstructures and related superconducting properties were systematically investigated. The introductions of K+ and Ag both obviously affected the thermodynamic parameters of Bi-2212 system. Accordingly the sintering temperature during HP process changed dramatically. After the HP process, increases of average grain size were obtained with Ag incorporation, based on both XRD and SEM analysis, which implied the formation of better texture alignment structure. Slight decrease of critical temperature was observed corresponding to the changing valence of Cu2+ ions on superconducting layer. Increase of superconducting phase volume was achieved on the K and Ag co-incorporated bulk. And the enhancement of current capacity was also achieved on the very same sample, under the magnetic field higher than 1 T. The different flux pinning mechanism between K and K/Ag incorporated sample from point pinning to surface pinning could be related to the microstructure change, which can be recognized as a solid evidence for the different effects of K and Ag.

Notes

Acknowledgements

This research was financially supported the National Natural Science Foundation of China under contract No. 51472206, and ITER program of China under contract No. 2013GB110001.

References

  1. 1.
    U.P. Trociewitz, J. Schwartz, K. Marken, H. Miao, M. Meinesz, B. Czabaj, NHMFL Rep. 13, 31 (2006)Google Scholar
  2. 2.
    H. Miao, K.R. Marken, M. Meinesz, B. Czabaj, S. Hong, IEEE Trans. Appl. Supercond. 15, 2554–2557 (2005)CrossRefGoogle Scholar
  3. 3.
    D.C. Larbalestier, J. Jiang, U.P. Trociewitz, F. Kametani, C. Scheuerlein, M. Dalban-Canassy, M. Matras, P. Chen, N.C. Craig, P.J. Lee, E.E. Hellstrom, Nat. Mater. 13, 375–381 (2014)CrossRefGoogle Scholar
  4. 4.
    H.M. Weijers, U.P. Trociewitz, W.D. Markiewicz, J. Jiang, D. Myers, E.E. Hellstrom, A. Xu, J. Jaroszynski, P. Noyes, Y. Viouchkov, D.C. Larbalestier, IEEE Trans. Appl. Supercond. 20, 576–582 (2010)CrossRefGoogle Scholar
  5. 5.
    T. Kiyoshi, A. Sato, H. Wada, S. Hatashi, M. Shimada, Y. Kawate, IEEE Trans. Appl. Supercond. 10, 472–477 (1999)CrossRefGoogle Scholar
  6. 6.
    Z. Melhem, S. Ball, S. Chappell, Phys. Procedia 36, 805–811 (2012)CrossRefGoogle Scholar
  7. 7.
    M. Dalban-Canassy, D.A. Myers, U.P. Trociewitz, J. Jiang, E.E. Hellstrom, Y. Viouchkov, D.C. Larbalestier, Supercond. Sci. Technol. 25, 115015 (2012)CrossRefGoogle Scholar
  8. 8.
    J. Bock, F. Breuer, C.E. Bruzek, N. Lallouet, M.O. Rikel, H. Walter, in WAMS, Archamps, ed. by L. Bottura, M. Buzio, T. Taylor (2004), pp. 149–155Google Scholar
  9. 9.
    K. Ohsemochi, K. Koyanagi, T. Kurusu, T. Tosaka, K. Tasaki, M. Ono, Y. Ishii, K. Shimada, S. Nomura, K. Kidoguchi, H. Onoda, N. Hirano, S. Nagaya, J. Phys. 43, 825–828 (2006)Google Scholar
  10. 10.
    J. Jiang, A. Francis, R. Alicea, M. Matras, F. Kametani, U.P. Trociewitz, E.E. Hellstrom, D.C. Larbalestier, IEEE Trans. Appl. Supercond. 27, 6400104 (2017)Google Scholar
  11. 11.
    S. Vinu, P.M. Sarun, A. Biju, R. Shabna, P. Guruswamy, U. Syamaprasad, Supercond. Sci. Technol. 21, 045001 (2008)CrossRefGoogle Scholar
  12. 12.
    L.N. Bulaevskii, L.L. Daemen, M.P. Maley, J.Y. Coulter, Phys. Rev. B 48, 13798 (1993)CrossRefGoogle Scholar
  13. 13.
    D. Buhl, T. Lang, L.J. Gauckler, Appl. Supercond. 4, 299–317 (1997)CrossRefGoogle Scholar
  14. 14.
    S. Stassen, A. Vanderschueren, R. Cloots, A. Rulmont, M. Ausloos, J. Cryst. Growth 166, 281–285 (1996)CrossRefGoogle Scholar
  15. 15.
    J.Y. Jiang, H.P. Miao, Y.B. Huang, S. Hong, J.A. Parrell, C. Scheuerlein, M.D. Michiel, A.K. Ghosh, U.P. Trocitwitz, E.E. Hellstrom, D.C. Larbalestier, IEEE Trans. Appl. Supercond. 23, 6400206 (2013)CrossRefGoogle Scholar
  16. 16.
    F. Kametani, E.G. Lee, T. Shen, P.J. Lee, J. Jiang, E.E. Hellstrom, D.C. Larbalestier, Supercond. Sci. Technol. 27, 055004 (2014)CrossRefGoogle Scholar
  17. 17.
    C.J. Eastell, B.M. Henry, C.G. Morgan, C.R.M. Grovenor, M.J. Goringe, IEEE Trans. Appl. Supercond. 7, 2083 (1997)CrossRefGoogle Scholar
  18. 18.
    Y.N. Tsay, Q. Li, Y. Zhu, M. Suenaga, K. Shibutani, I. Shigaki, R. Ogawa, IEEE Trans. Appl. Supercond. 9, 1622–1625 (1999)CrossRefGoogle Scholar
  19. 19.
    Y. Nakayama, T. Motohashi, K. Otzschi, J. Shimoyama, K. Kitazawa, K. Kishio, Phys. Rev. B 62, 1452–1456 (2000)CrossRefGoogle Scholar
  20. 20.
    M. Mora, A. Sotelo, H. Amaveda, M.A. Madre, J.C. Diez, F. Capel, J.M. Lopez-Cepero, J. Eur. Cera. Soc. 27, 3959–3962 (2007)CrossRefGoogle Scholar
  21. 21.
    A. Sotelo, S. Rasekh, G. Constantinescu, H. Amaveda, M.A. Torres, M.A. Madre, J.C. Diez, J. Eur. Ceram. Soc. 34, 2977–2982 (2014)CrossRefGoogle Scholar
  22. 22.
    H. Fujii, Y. Hishinuma, H. Kitaguchi, H. Kumakura, K. Togano, Phys. C 331, 79–84 (2000)CrossRefGoogle Scholar
  23. 23.
    F. Jean, G. Collin, M. Andrieux, N. Blanchard, A. Forget, S. Rousseau, J.-F. Marucco, Phys. C 384, 345–350 (2003)CrossRefGoogle Scholar
  24. 24.
    I.B. Bobylev, E.I. Patrakov, L.N. Kuz’minykh, N.A. Zyuzeva, E.P. Romanov, Inorg. Mater. 39, 730–732 (2003)CrossRefGoogle Scholar
  25. 25.
    A. Amira, Y. Boudjadja, A. Saoudel, A. Varilci, M. Akdogan, C. Terzioglu, M.F. Mosbah, Phys. B 406, 1022–1027 (2011)CrossRefGoogle Scholar
  26. 26.
    S. Vinu, P.M. Sarun, R. Shabna, P.M. Aswathy, J.B. Anooja, U. Syamaprasad, Phys. B 405, 4355–4359 (2010)CrossRefGoogle Scholar
  27. 27.
    R. Shabna, P.M. Sarun, S. Vinu, U. Syamaprasad, J. Alloys Compd. 493, 11–16 (2010)CrossRefGoogle Scholar
  28. 28.
    R. Shabna, P.M. Sarun, S. Vinu, U. Syamaprasad, J. Alloys Compd. 48, 797–801 (2010)Google Scholar
  29. 29.
    P.M. Saruna, S. Vinua, R. Shabnaa, A. Bijub, U. Syamaprasad, J. Alloys Compd. 472, 13–17 (2009)CrossRefGoogle Scholar
  30. 30.
    S. Vinu, P.M. Sarun, R. Shabna, A. Biju, U. Syamaprasad, Mater. Lett. 62, 4421–4424 (2008)CrossRefGoogle Scholar
  31. 31.
    S. Vinu, P.M. Sarun, A. Biju, R. Shabna, P. Guruswamy, U. Syamaprasad, Supercond. Sci. Technol. 21 (2008)Google Scholar
  32. 32.
    P.M. Sarun, S. Vinu, R. Shabna, A. Biju, U. Syamaprasad, Mater. Lett. 62, 2725–2728 (2008)CrossRefGoogle Scholar
  33. 33.
    A. Biju, U. Syamaprasad, A. Rao, J.G. Xu, K.M. Sivakumar, Y.K. Kuo, Phys. C 466, 69–75 (2007)CrossRefGoogle Scholar
  34. 34.
    X. Sun, X. Zhao, W. Wu, X. Fan, X.-G. Li, Phys. C 305, 227–232 (1998)CrossRefGoogle Scholar
  35. 35.
    T.G. Holesinger, H. Miao, M. Meinesz, Y. Huang, J. Parrell, J.A. Kennison, K.R. Marken, S. Campbell, IEEE Trans. Appl. Supercond. 21, 2791–2794 (2011)CrossRefGoogle Scholar
  36. 36.
    D.I.d. Santos, J.H. Kim, M. Qin, K. Konstantinov, S.X. Dou, Phys. C 460–462, 1329–1330 (2007)CrossRefGoogle Scholar
  37. 37.
    S.N. Zhang, C.S. Li, T.N. Lu, Q.B. Hao, P.X. Zhang, Supercond. Sci. Technol. 28, 045014 (2015)CrossRefGoogle Scholar
  38. 38.
    S.N. Zhang, C.S. Li, Q.B. Hao, J.Q. Feng, T.N. Lu, P.X. Zhang, J. Supercond. Nov. Magn. 28, 1729–1736 (2015)CrossRefGoogle Scholar
  39. 39.
    C.S. Li, S.N. Zhang, L. Gao, Q.B. Hao, L.F. Bai, P.X. Zhang, J. Mater. Sci.: Mater. Electron. 26, 3583–3588 (2015)Google Scholar
  40. 40.
    S.N. Zhang, C.S. Li, Q.B. Hao, T.N. Lu, P.X. Zhang, Mater. Sci. Forum 787, 448 (2014)CrossRefGoogle Scholar
  41. 41.
    C.B. Mao, L. Zhou, X.Y. Sun, X.Z. Wu, Phys. C 281, 35–44 (1997)CrossRefGoogle Scholar
  42. 42.
    C.P. Bean, Phys. Rev. Lett. 8, 250–253 (1962)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Superconducting Materials Research CenterNorthwest Institute for Nonferrous Metal ResearchXi’anChina
  2. 2.Western Superconducting Technologies Co., LtdXi’anChina
  3. 3.College of Materials Science and EngineeringXi’an University of TechnologyXi’anChina

Personalised recommendations