Advertisement

Magnetoelectric coupling of manganese ferrite–potassium niobate lead-free composite ceramics synthesized by solid state reaction method

  • P. Komalavalli
  • I. B. Shameem Banu
  • M. Shahid Anwar
Article
  • 27 Downloads

Abstract

Lead-free composite ceramics xMnFe2O4-(1 − x) KNbO3 with the composition of x = 0.20, 0.30 and 0.40 were synthesized by the solid state reaction method to obtain the composites of ferrite and ferroelectric to achieve magnetoelectric coupling. A confirmation study for the formation of spinel cubic MnFe2O4 ferrite ceramic and orthorhombic KNbO3 ferroelectric ceramic was performed by X ray diffraction. The strain in the composite for various compositions was estimated using W–H method to understand the variation of multiferroic features of the ceramic composites. The Transmission Electron Micrograph and High Resolution Transmission Electron Micrograph images reveal the existence of ferrite and ferroelectric phases. Weak magnetic behavior is exhibited by the ferrite-ferroelectric composites as compared to ferrite MnFe2O4. The 20:80 composite possesses the highest magnetic parameters among the compositions. The 40:60 composite recorded the maximum Pr and Ec values. The enhanced ME coupling between magnetic and ferroelectric phases is shown for 40:60 composite and the same is good for the lead free multifunctional device. All the composite samples show low current leakage.

Notes

Acknowledgements

The authors acknowledge sophisticated analytical instrumentation facilities, Indian Institute of Technology Madras for providing the facility of vibrating sample magnetometer. They thank sophisticated test and instrumentation centre, Cochin for extending the TEM and HRTEM characterization. The authors thank Dr. M. S. Ramachander Rao, Department of Physics, Indian Institute of Technology Madras for helping to characterize the electrical studies using Radiant Technology Pvt Ltd. This research work is supported by Department of science and Technology, India under project No: SR/WOS-A/PS-12/2014(G) and the authors are extremely thankful to DST for providing the financial support.

References

  1. 1.
    J. van Suchtelen, Product properties: a new application of composite materials. Philips Res. Rep. 27, 28–37 (1972)Google Scholar
  2. 2.
    H. Zheng, J. Wang, S.E. Lofland, Z. Ma, L. Mohaddes-Ardabili, T. Zhao, L. Salamanca-Riba, S.R. Shinde, S.B. Ogale, F. Bai, D. Viehland, Y. Jia, D.G. Schlom, M. Wuttig, A. Roytburd, R. Ramesh, Multiferroic BaTiO3-CoFe2O4 nanostructure. Science 303, 661 (2004)CrossRefGoogle Scholar
  3. 3.
    M. Fiebig, Chem inform revival of the magnetoelectric effect. J. Phys. D 38, R123–R152 (2005)CrossRefGoogle Scholar
  4. 4.
    N.A. Hill, Why are there so few magnetic ferroelectrics. J. Phys. Chem. B 104, 6694–6709 (2000)CrossRefGoogle Scholar
  5. 5.
    J.V.D. Boomgaard, A.M.J.G. van Run, J.V. Suchtelen, Piezoelectric-piezomagnetic composites with magnetoelectric effect. Ferroelectrics 14, 727–728 (1976)CrossRefGoogle Scholar
  6. 6.
    S.V. Suryanarayana, Magnetoelectric interaction phenomena in materials. Bull. Mater. Sci. 17, 1259–1270 (1994)CrossRefGoogle Scholar
  7. 7.
    S.K. Upadhaya, V.R. Reddy, Study of 0.9 BaTiO3-0.1 NixZn1−xFe2O4NixZn1−xFe2O4 magneto-electric composite ceramics. J. Appl. Phys. 113, 114107–114111 (2013)CrossRefGoogle Scholar
  8. 8.
    X. Shen, Z. Zhou, F. Song, X. Meng, Synthesis and magnetic properties of nanocomposite Ni1−xCoxFe2O4-BaTiO3 fiber by organic gel-thermal decomposition process. J. Sol-Gel Technol. 53, 405–411 (2010)CrossRefGoogle Scholar
  9. 9.
    V.R. Mudinepalli, S.H. Song, J.Q. Li, B.S. Murty, Magnetoelectric properties of lead-free Ni0.93Co0.02Mn0.05Fe1.95O4–Na0.5Bi0.5TiO3 multiferroic composites synthesized by spark plasma sintering. J. Magn. Magn. Mater. 386, 44–49 (2015)CrossRefGoogle Scholar
  10. 10.
    R.P. Mahajan, K.K. Patankar, N.M. Burange, S.C. Chaudhari, A.N. Patil, S.A. Patil, Dielectric properties and electrical conduction of nickel ferrite-barium titanate composites. Indian J. Pure Appl. Phys. Sci. 38, 615–620 (2000)Google Scholar
  11. 11.
    I.V. Lisnevskaya, K.V. Myagkaya, I.A. Bobrova, Lithium sodium potassium niobate-modified nickel ferrite lead free magnetoelectric composite ceramics. J. Ceram. Int. 41, 15217–15221 (2015)CrossRefGoogle Scholar
  12. 12.
    S. Banerjee, P. Hajra, A. Bhaumik, S. Bandyopadhay, D. Chakravorty, Large magnetodielectric effect in nickel zinc ferrite–lithium niobate nanocomposite. Chem. Phys. Lett. 541, 96–100 (2012)CrossRefGoogle Scholar
  13. 13.
    R. Rakhikrishna, J. Isaac, J. Philip, Magneto-electric characterization of x (Na0.5K0.5)0.94Li0.06NbO3-(1-x) NiFe2O4 composite ceramics. J. Electroceram. 35, 120–128 (2015)CrossRefGoogle Scholar
  14. 14.
    R. Rakhikrishna, J. Isaac, J. Philip, Magnetoelectric coupling in multiferroic nanocomposites of the type x(Na0.5K0.5)0.94Li0.06NbO3 - (1-x) CoFe2O4: role of ferrite phase. J. Ceram. Int. 43, 664–671 (2017)CrossRefGoogle Scholar
  15. 15.
    C.S. Chitralekha, M. Rasi, P.B. Aravind, M.R. Anantharaman, S.S. Nair, Synthesis of coaxial CoFe2O4–K0.5Na0.5NbO3 Nanotubes by sol gel technique using inexpensive templates. AIP Conf. Proc. 1665, 140048.  https://doi.org/10.1063/1.4918257
  16. 16.
    T. Tatarchuk, M. Bououdina, W. Macyk, O. Shyichuk, N. Paliychuk, I. Yaremiy, B. Al-Najar, M. Pacia, Structural, optical, and magnetic properties of Zn-doped CoFe2O4 nanoparticles. Nanoscale Res. Lett. 12, 141 (2017)CrossRefGoogle Scholar
  17. 17.
    S.S. Priya, I.B. Shameem Banu, M. Chavali, Influence of (La, Cu) doping on the room temperature multiferroic properties of BiFeO3 Ceramics. Arab. J. Sci. Eng. 40, 2079–2084 (2015)CrossRefGoogle Scholar
  18. 18.
    K. Sadhana, S.R. Murthy, S. Jie, Y. Xie, Y. Liu, Q. Zhan, R.W. Li, Magnetic field induced polarization and magnetoelectric effect of Ba0.8Ca0.2TiO3-Ni0.2Cu0.3Zn0.5Fe2O4 nanomultiferroic. J. Appl. Phys. 113, 17C731 (2013)CrossRefGoogle Scholar
  19. 19.
    B.G. Toksha, S.E. Shirsath, S.M. Patange, K.M. Jadhav, Structural investigations and magnetic properties of cobalt ferrite nanoparticles prepared by sol–gel auto combustion method. Solid State Commun. 147, 479–483 (2008)CrossRefGoogle Scholar
  20. 20.
    U.S. Sharma, R.N. Sharma, R. Shah, Physical and magnetic properties of manganese ferrite nanoparticles. J. Eng. Res. Appl. 4(8), 14–17 (2014)Google Scholar
  21. 21.
    M.V. Ramana, N.R. Reddy, B.S. Murty, V.R.K. Murthy, K.V.S. Kumar, Ferromagnetic-dielectric Ni0.5Zn0.5Fe1.9O4−δ/PbZr0.52Ti0.48O3 particulate composites: electric, magnetic, mechanical, and electromagnetic properties. Adv. Condens. Matter Phys. 2010, 14Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • P. Komalavalli
    • 1
  • I. B. Shameem Banu
    • 1
  • M. Shahid Anwar
    • 2
  1. 1.Department of PhysicsB.S.Abdur Rahman Crescent Institute of Science and TechnologyVandalurIndia
  2. 2.Colloids and Materials Chemistry DepartmentCSIR Institute of Minerals and Materials TechnologyBhubaneswarIndia

Personalised recommendations