Advertisement

Synergistic effect of hexagonal flake Co3O4@PANI core–shell composites with excellent microwave-absorbing properties

  • Hanxiao Jia
  • Honglong XingEmail author
  • Xiaoli Ji
  • Shengtao Gao
Article
  • 25 Downloads

Abstract

Hexagonal flake Co3O4 was prepared by calcining Co-MOF precursors in air. Co3O4@PANI was obtained via hydrothermal and oxidative polymerization processes, and the electromagnetic wave absorption properties of the composites were investigated. Scanning emission microscopy and transmission electron microscopy images show that hexagonal flake Co3O4 possesses a diameter in the range of 2–4 µm and a side length 550–950 nm. With the decrease in Co3O4 content, the absorption performance of Co3O4@PANI increases gradually. When the mass ratio of Co3O4 to PANI is 1:8, the minimum reflection loss value is − 37.39 dB at 7.28 GHz with a layer thickness of 4 mm. Co3O4@PANI also has effective absorption with the entire test thickness, and the maximum absorption bandwidth can reach 3.52 GHz. Therefore, the as prepared hexagonal flake Co3O4@PANI has potential for application in the field of electromagnetic wave absorption.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant 51477002; Grant 51707003) and Graduate Innovation Fund Project of Anhui University of Science and Technology (2017CX2105).

References

  1. 1.
    B. Wen, J. Yuan, Z.L. Hou, W.L. Song, L. Zhang, M.M. Lu, H.B. Jin, X.Y. Fang, W.Z. Wang, M.S. Cao, Carbon 65, 124 (2013)CrossRefGoogle Scholar
  2. 2.
    M.S. Cao, W.L. Song, Z.L. Hou, B. Wen, J. Yuan, Carbon 48, 788 (2010)CrossRefGoogle Scholar
  3. 3.
    Z.Y. Shen, H.L. Xing, H. Wang, H.X. Jia, Y. Liu, A.J. Chen, P.Y. Yang, J. Alloys Compd. 753, 28 (2018)CrossRefGoogle Scholar
  4. 4.
    L. Lin, Z.D. He, Y.T. Zhao, J.C. Sun, G.X. Tong, J. Alloys Compd. 765, 1218 (2018)CrossRefGoogle Scholar
  5. 5.
    C.H. Cui, D.X. Yan, H. Pang, L.C. Jia, X. Xu, S. Yang, J.Z. Xu, Z.M. Li, Chem. Eng. J. 323, 29 (2017)CrossRefGoogle Scholar
  6. 6.
    M.T. Qiao, X.F. Lei, Y. Ma, L.D. Tian, K.H. Su, Q.Y. Zhang, Chem. Eng. J. 304, 552 (2016)CrossRefGoogle Scholar
  7. 7.
    B. Zhao, X.Q. Guo, W.Y. Zhao, J.S. Deng, G. Shao, B.B. Fan, Z.Y. Bai, R. Zhang, ACS Appl. Mater. Interfaces 8, 28917 (2016)CrossRefGoogle Scholar
  8. 8.
    X.G. Huang, J. Zhang, M. Lai, T.Y. Sang, J. Alloys Compd. 627, 367 (2015)CrossRefGoogle Scholar
  9. 9.
    Y. Yang, C.L. Xu, Y.X. Xia, T. Wang, F.S. Li, J. Alloys Compd. 493, 549 (2010)CrossRefGoogle Scholar
  10. 10.
    J. Ma, X. Wang, W. Cao, W.Q. Cao, C. Han, H.J. Yang, J. Yuan, M.S. Cao, Chem. Eng. J. 339, 487 (2018)CrossRefGoogle Scholar
  11. 11.
    F.S. Wen, H. Hou, J.Y. Xiang, X.,Y. Zhang, Z.B. Su, S.J. Yuan, Z.Y. Liu, Carbon 89, 372 (2015)CrossRefGoogle Scholar
  12. 12.
    X.B. Li, S.W. Yang, J. Sun, P. He, X.P. Pu, G.Q. Ding, Synth. Met. 194, 52 (2014)CrossRefGoogle Scholar
  13. 13.
    P.L. Quang, N.D. Cuong, T.T. .Hoa, H.T. Long, C.M. Hung, D.T.T. Le, N.V. Hieu, Sensors Actuators B 270, 158 (2018)CrossRefGoogle Scholar
  14. 14.
    Y. Hakat, T.V. Kotbagi, M.G. Bakker, J. Mol. Catal. A 411, 61 (2016)CrossRefGoogle Scholar
  15. 15.
    L.T. Ma, S.M. Chen, H.F. Li, Z.H. Ruan, Z.J. Tang, Z.X. Liu, Z.F. Wang, Y. Huang, Z.X. Pei, Z.A. Juan, C.H. Zhi, Energy Environ. Sci. 11, 2521 (2018)CrossRefGoogle Scholar
  16. 16.
    J.T. Yuan, Q.C. Liu, S.K. Li, Y. Lu, S.W. Jin, K.Z. Li, H. Chen, H. Zhang, Synth. Met. 228, 32 (2017)CrossRefGoogle Scholar
  17. 17.
    B. Zhao, J.S. Deng, L.Y. Liang, C.Y. Zuo, Z.Y. Bai, X.Q. Guo, R. Zhang, CrystEngComm 41, 6095 (2017)CrossRefGoogle Scholar
  18. 18.
    Y. Ding, Z. Zhang, B.H. Luo, Q.L. Liao, S. Liu, Y.C. Liu, Y. Zhang, Nano Res. 3, 980 (2017)CrossRefGoogle Scholar
  19. 19.
    H.J. Wu, Q.F. Wu, L.D. Wang, Mater. Charact. 103, 1 (2015)CrossRefGoogle Scholar
  20. 20.
    H. Hu, B.Y. Guan, B.Y. Xia, X.W. Lou, J. Am. Chem. Soc. 137, 5590 (2015)CrossRefGoogle Scholar
  21. 21.
    S.H. Xuan, Y.X.J. Wang, K.C.F. Leung, K.Y. Shu, J. Phys. Chem. C 112, 18804 (2008)CrossRefGoogle Scholar
  22. 22.
    Y.Y. Lü, W.W. Zhan, Y. He, Y.T. Wang, X.J. Kong, Q. Kuang, Z.X. Xie, L.S. Zheng, ACS Appl. Mater. Interfaces 6, 4186 (2014)CrossRefGoogle Scholar
  23. 23.
    A. Khan, A.S. Aldwayyan, M. Alhoshan, M. Alsalhi, Polym. Int. 59, 1690 (2010)CrossRefGoogle Scholar
  24. 24.
    J. Deng, X. Ding, W. Zhang, Y. Peng, J. Wang, X. Long, A.S. Chan, Polymer 43, 2179 (2002)CrossRefGoogle Scholar
  25. 25.
    H.L. Xing, Z.Y. Shen, L. Wang, Y.T. Zhu, X.L. Ji, J. Mater. Sci.-Mater. Electron. 28, 8329 (2017)CrossRefGoogle Scholar
  26. 26.
    L. Yin, D.L. Chen, X. Cui, L.F. Ge, J. Yang, L.L. Yu, B. Zhang, R. Zhang, G. Shao, Nanoscale 6, 13690 (2014)CrossRefGoogle Scholar
  27. 27.
    D. Ghosh, S. Giri, A. Mandal, C.K. Das, RSC Adv. 3, 11676 (2013)CrossRefGoogle Scholar
  28. 28.
    T.H. Wang, Y.F. Li, L.N. Wang, C. Liu, S. Geng, X.L. Jia, F. Yang, L.Q. Zhang, L.P. Liu, B. You, X. Ren, H.T. Yang, RSC Adv. 5, 60114 (2015)CrossRefGoogle Scholar
  29. 29.
    B.C. He, X.X. Chen, J.M. Lu, S.D. Yao, J. Wei, Q. Zhao, D.S. Jing, X.N. Huang, T. Wang, Electroanalysis 28, 2435 (2016)CrossRefGoogle Scholar
  30. 30.
    L. Wang, H.L. Xing, S.T. Gao, X.I. Ji, Z.Y. Shen, J. Mater. Chem. C5, 2005 (2017)Google Scholar
  31. 31.
    Y. Wang, X. Gao, W.Z. Zhang, C.Y. Luo, L.J. Zhang, P. Xue, J. Alloys Compd. 757, 372 (2018)CrossRefGoogle Scholar
  32. 32.
    Y. Lin, J.J. Dai, H.B. Yang, L. Wang, F. Wang, Chem. Eng. J. 334, 1740 (2018)CrossRefGoogle Scholar
  33. 33.
    L. Wang, X. Li, Q.Q. Li, Y.H. Zhao, R.C. Che, ACS Appl. Mater. Interfaces 8, 22602 (2018)CrossRefGoogle Scholar
  34. 34.
    L. Wang, Y. Huang, C. Li, J.J. Sun, X. Chen, Phys. Chem. Chem. Phys. 17, 5878 (2015)CrossRefGoogle Scholar
  35. 35.
    G.B. Sun, B.X. Dong, M.H. Cao, B.Q. Wei, C.W. Hu, Chem. Mater. 23, 1587 (2011)CrossRefGoogle Scholar
  36. 36.
    J. Wang, X.Y. Lin, R.X. Zhang, Z.Y. Chu, Z.Y. Huang, J. Alloys Compd. 743, 26 (2018)CrossRefGoogle Scholar
  37. 37.
    X.L. Dong, X.F. Zhang, H. Huang, F. Zuo, Appl. Phys. Lett. 92, 013127 (2008)CrossRefGoogle Scholar
  38. 38.
    J.Z. He, X.X. Wang, Y.L. Zhang, M.S. Cao, J. Mater. Chem. C 4, 7130 (2016)CrossRefGoogle Scholar
  39. 39.
    X. Wang, J.C. Shu, X.M. He, M. Zhang, X.X. Wang, C. Gao, J. Yuan, M.S. Cao, ACS Sustain. Chem. Eng 6, 14017 (2018)CrossRefGoogle Scholar
  40. 40.
    R.F. Bianchi, H.N. da Cunha, R.M. Faria, G.F. Leal Ferreira, J. Mariz, G. Neto, J. Phys. D Appl. Phys. 38, 1437 (2005)CrossRefGoogle Scholar
  41. 41.
    M.S. Cao, X.X. Wang, W.Q. Cao, X.Y. Fang, B. Wen, J. Yuan, Small, 14, 1800987(2018)CrossRefGoogle Scholar
  42. 42.
    W.Q. Cao, X.X. Wang, J. Yuan, W.Z. Wang, M.S. Cao, J. Mater. Chem. C 3, 10017 (2015)CrossRefGoogle Scholar
  43. 43.
    Y.C. Zhang, S.T. Gao, H.L. Xing, J. Alloys Compd. 777, 544 (2019)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Chemical EngineeringAnhui University of Science and TechnologyHuainanPeople’s Republic of China

Personalised recommendations