Structurally modulated dielectric relaxation in rhombohedral Cr2O3 mediated by Mn addition

  • Samina Nazli Khan
  • Ahmad Nauman Shah SaqibEmail author
  • Muhammad Arshad
  • Shahid AtiqEmail author
  • Shahzad Naseem


A simple, energy and time efficient, sol–gel based auto-combustion route was employed to synthesize phase pure nanoparticles of Cr2O3 and MnCr2O4 to study structural, dielectric, impedance and ferroelectric properties. Crystal structure, identified through X-ray diffraction, revealed that Cr2O3 had rhombohedral symmetry (R-3c), while MnCr2O4 possessed cubic spinel symmetry with space group, Fd-3m. Data obtained from X-ray diffraction was further utilized to refine the diffraction patterns using Rietveld’s refinement approach to confirm the structural parameters. Frequency dependent dielectric properties have been investigated systematically in a high frequency range from 20 Hz to 20 MHz. Dielectric constant, loss factor and tangent loss were found to decrease with increase in frequency due to hopping and mainly explained on the basis of Maxwell–Wagner’s model followed by Koop’s theory. Impedance studies helped to define the electro-active regions and Nyquist plot thereby was used to evaluate grain and grain boundary resistance of the synthesized samples. Conductivity behavior followed by the typical Jonscher’s power law was confirmed by calculating the exponent in the expression and thus the hopping mechanism of charge carriers inside these chromites was studied. Ferroelectric analysis showed the potential of the synthesized samples in multifunctional memory devices, used in the miniaturized industry.


  1. 1.
    M. Gul, Mater. Res. Bull. 76, 431 (2016)CrossRefGoogle Scholar
  2. 2.
    I. Matulkova, P. Holec, B. Pacakova, A. Kubickova, S. Mantlikova, J. Plocek, I. Nemec, D. Niznansky, J. Vejpravova, Mater. Sci. Eng. B 195, 66 (2015)CrossRefGoogle Scholar
  3. 3.
    Z. Mousavi, M. Esmaeili-zare, M. Salavati-niasari, Trans. Nonferrous Met. Soc. 25, 3980 (2015)CrossRefGoogle Scholar
  4. 4.
    Y.C. Liang, Y.R. Cheng, H.Y. Hsia, C.C. Chung, Appl. Surf. Sci. 364, 837 (2016)CrossRefGoogle Scholar
  5. 5.
    F. Beshkar, O. Amiri, M. Salavati-Niasari, F. Beshkar, J. Mater. Sci. 26, 8182 (2015)Google Scholar
  6. 6.
    A. Abbasi, H. Khojesteh, M. Hamadanian, M. Salavati-Niasari, Sep. Purif. Technol. 195, 37 (2018)CrossRefGoogle Scholar
  7. 7.
    R.N. Bhowmik, I.P. Muthuselvam, J. Alloys Compds. 589, 247 (2014)CrossRefGoogle Scholar
  8. 8.
    M.A. Elkestawy, J. Alloy Compd. 492, 616 (2010)CrossRefGoogle Scholar
  9. 9.
    Z. Ahmad, S. Atiq, S.K. Abbas, S.M. Ramay, S. Riaz, S. Naseem, Ceram. Int. 42, 18271 (2016)CrossRefGoogle Scholar
  10. 10.
    G.T. Lin, W. Tong, X. Luo, F.C. Chen, L.H. Yin, Y.Q. Wang, L. Hu, Y.M. Zou, L. Yu, W.H. Song, Y.P. Sun, J. Alloy Compd. 711, 250 (2017)CrossRefGoogle Scholar
  11. 11.
    A. Afzal, S. Atiq, M. Saleem, S.M. Ramay, S. Naseem, S.A. Siddiqi, J. Sol-Gel Technol. 80, 96 (2016)CrossRefGoogle Scholar
  12. 12.
    Y. Chen, Z. Liu, S.P. Ringer, Z. Tong, X. Cui, Y. Chen, Cryst. Growth Des. 7, 2279 (2007)CrossRefGoogle Scholar
  13. 13.
    R. Masrour, M. Hamedoun, A. Benyoussef, J. Magn. Magn. Mater. 322, 301 (2010)CrossRefGoogle Scholar
  14. 14.
    E. Winkler, S.B. Canosa, F. Rivadulla, M.A. López-Quintela, J. Rivas, A. Caneiro, M.T. Causa, M. Tovar, Phys. Rev. B 80, 104418 (2009)CrossRefGoogle Scholar
  15. 15.
    N. Mufti, G.R. Blake, T.T.M. Palstra, J. Magn. Magn. Mater. 321, 1767 (2009)CrossRefGoogle Scholar
  16. 16.
    S.H. Song, Z.X. Yuan, P. Xiao, J. Mater. Sci. Lett. 22, 755 (2003)CrossRefGoogle Scholar
  17. 17.
    M. Kamran, A. Ullah, S. Rahman, A. Tahir, K. Nadeem, M.A. Rehman, S. Hussian, J. Magn. Magn. Mater. 433, 178 (2017)CrossRefGoogle Scholar
  18. 18.
    E. Winkler, S.B. Canosa, F. Rivadulla, M.A. Lopez-Quintela, J. Rivas, A. Caneiro, M.T. Causa, M. Tovar, Phys. Rev. B 80, 104418 (2009)CrossRefGoogle Scholar
  19. 19.
    Z. Mousavi, F. Soofivand, M. Esmaeili-Zare, M. Salavati-Niasari, S. Bagheri, Sci. Rep. 6, 20071 (2016)CrossRefGoogle Scholar
  20. 20.
    H. Tajizadegan, A. Heidary, O. Torabi, M.H. Golabgir, A. Jamshidi, Int. J. Appl. Ceram. Technol. 13, 289 (2016)CrossRefGoogle Scholar
  21. 21.
    H. Li, W. Chen, Corros. Sci. 52, 2481 (2010)CrossRefGoogle Scholar
  22. 22.
    B.D. Cullity, Elements of X-ray Diffraction, 2nd edn. (Addison Wesley Publishing Company Inc, California, 1978)Google Scholar
  23. 23.
    S.K. Abbas, S. Atiq, S. Riaz, S.M. Ramay, S. Naseem, Mater. Chem. Phys. 200, 128 (2017)CrossRefGoogle Scholar
  24. 24.
    Elkestawy M., J. Alloy. Compd. 492, 616 (2010)CrossRefGoogle Scholar
  25. 25.
    D.H. Kim, S.H. Lee, K.N. Kim, K.M. Kim, I.B. Shim, Y.K. Lee, J. Magn. Magn. Mater. 293, 320 (2005)CrossRefGoogle Scholar
  26. 26.
    B. Dhanalakshmi, P. Kollu, B.P. Rao, P.S. Rao, Ceram. Int. 42, 2186 (2016)CrossRefGoogle Scholar
  27. 27.
    S. Atiq, M. Majeed, A. Ahmad, S.K. Abbas, M. Saleem, S. Riaz, S. Naseem, Ceram. Int. 43, 2486 (2017)CrossRefGoogle Scholar
  28. 28.
    F.S. Al-Hazmi, D.M. Leeuw, A.A. Al-Ghamdi, F.S. Shokr, Optik 138, 207 (2017)CrossRefGoogle Scholar
  29. 29.
    N. Sivakumar, A. Narayanasamy, C. Chinnasamy, B. Jeyadevan, J. Phys-Condens Mater. 19, 386201 (2007)CrossRefGoogle Scholar
  30. 30.
    T. Hussain, M. Junaid, S. Atiq, S.K. Abbas, S.M. Ramay, B.F. Alrayes, S. Naseem, J. Alloy. Compd. 724, 940 (2017)CrossRefGoogle Scholar
  31. 31.
    S. Kumar, B. Kaur, P. Kotru, K. Bamzai, Ferroelectrics 332, 167 (2006)CrossRefGoogle Scholar
  32. 32.
    B. Want, Curr. Appl. Phys. 13, 1928 (2013)CrossRefGoogle Scholar
  33. 33.
    R. Bhowmik, I.P. Muthuselvam, J. Alloy. Compd. 589, 247 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Centre of Excellence in Solid State PhysicsUniversity of the PunjabLahorePakistan
  2. 2.Centre for Water Resource Cycle Research, Green City Technology InstituteKorea Institute of Science and Technology (KIST)SeoulRepublic of Korea
  3. 3.Division of Energy and Environment Technology, KIST SchoolKorea University of Science and Technology (KUST)SeoulRepublic of Korea

Personalised recommendations