Preparation of microwave absorbing Co-C nanofibers with robust superhydrophobic properties by electrospinning

  • Yongqian Shen
  • Yupeng Wei
  • Jian Li
  • Qinglin Li
  • Jiqiang Ma
  • Pingbo Wang
  • Bin Li
  • Wenbo He
  • Xueyan DuEmail author


High-performance microwave absorbers with excellent absorption ability and superhydrophobic property are extremely significant for the application of stealthy techniques, especially in high-humidity environment. In this research, high-performance Co-C nanofibers (NFs) were prepared via electrospinning mathod by using of poly (vinyl alcohol) (PVA) and Cobalt acetate tetrahydrate (CoAc) solution as precursor with subsequent PVA pyrolyzation and carbonization process. The electromagnetic (EM) parameters and microwave absorption performance of the prepared NFs were investigated with the microwave frequency ranging from 2.0 GHz to 18.0 GHz. Analysis and comparison were performed on the impedance matching and loss mechanisms of each sample. The experimental results indicated that the sample calcinated at 950 °C achieved an optimal reflection loss (RL) of − 33.1 dB and an effective frequency bandwidth of 4.1 GHz under a thickness of 1.5 mm; and that the Co-C NFs membrane with the optimal absorption performance exhibited superhydrophobic property with a contact angle (CA) of 152°, suggesting their promising application to water-resistant stealthy materials.



This work was supported by the National Natural Science Foundation of China (No. 51363015) and the Gansu Province Natural Science Foundation (No. 1506RJZA107).


  1. 1.
    W. She, H. Bi, Z. Wen, Q. Liu, X. Zhao, J. Zhang, R. Che, Tunable microwave absorption frequency by aspect ratio of hollow polydopamine@alpha-MnO2 microspindles studied by electron holography. ACS Appl. Mater. Interfaces 8, 9782–9789 (2016)CrossRefGoogle Scholar
  2. 2.
    Q. Liu, Q. Cao, H. Bi, C. Liang, K. Yuan, W. She, Y. Yang, R. Che, CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 28, 486–490 (2016)CrossRefGoogle Scholar
  3. 3.
    Y. Du, W. Liu, R. Qiang, Y. Wang, X. Han, J. Ma, P. Xu, Shell thickness-dependent microwave absorption of core-shell Fe3O4@C composites. ACS Appl. Mater. Interfaces 6, 12997–13006 (2014)CrossRefGoogle Scholar
  4. 4.
    J. Feng, F. Pu, Z. Li, X. Li, X. Hu, J. Bai, Interfacial interactions and synergistic effect of CoNi nanocrystals and nitrogen-doped graphene in a composite microwave absorber. Carbon 104, 214–225 (2016)CrossRefGoogle Scholar
  5. 5.
    W. Chu, Y. Wang, Y. Du, R. Qiang, C. Tian, X. Han, FeCo alloy nanoparticles supported on ordered mesoporous carbon for enhanced microwave absorption. J. Mater. Sci. 52, 13636–13649 (2017)CrossRefGoogle Scholar
  6. 6.
    H. Wu, G. Wu, Y. Ren, L. Yang, L. Wang, X. Li, Co2+/Co3+ ratio dependence of electromagnetic wave absorption in hierarchical NiCo2O4-CoNiO2 hybrids. J. Mater. Chem. C 3, 7677–7690 (2015)CrossRefGoogle Scholar
  7. 7.
    Y. Cheng, M. Tan, P. Hu, X. Zhang, B. Sun, L. Yan, S. Zhou, W. Han, Strong and thermostable SiC nanowires/graphene aerogel with enhanced hydrophobicity and electromagnetic wave absorption property. Appl. Surf. Sci. 448, 138–144 (2018)CrossRefGoogle Scholar
  8. 8.
    H. Wang, Y. Zheng, W. Cui, Y. Sun, D. Zhang, Interface polarization strategy to prepare Sn/SnO2@C absorber with tunable core compositions and broader frequency absorption properties. Appl. Surf. Sci. 455, 1057–1062 (2018)CrossRefGoogle Scholar
  9. 9.
    D. Lan, M. Qin, R. Yang, S. Chen, H. Wu, Y. Fan, Q. Fu, F. Zhang, Facile synthesis of hierarchical chrysanthemum-like copper cobaltate-copper oxide composites for enhanced microwave absorption performance. J Colloid Interface Sci. 533, 481–491 (2019)CrossRefGoogle Scholar
  10. 10.
    M. Qiao, X. Lei, Y. Ma, L. Tian, K. Su, Q. Zhang, Dependency of tunable microwave absorption performance on morphology-controlled hierarchical shells for core-shell Fe3O4@MnO2 composite microspheres. Chem. Eng. J. 304, 552–562 (2016)CrossRefGoogle Scholar
  11. 11.
    H. Wu, S. Qu, K. Lin, Y. Qing, L. Wang, Y. Fan, Q. Fu, F. Zhang, Enhanced low-frequency microwave absorbing property of SCFs@TiO2 composite. Powder Technol. 333, 153–159 (2018)CrossRefGoogle Scholar
  12. 12.
    C. Song, X. Yin, M. Han, X. Li, Z. Hou, L. Zhang, L. Cheng, Three-dimensional reduced graphene oxide foam modified with ZnO nanowires for enhanced microwave absorption properties. Carbon 116, 50–58 (2017)CrossRefGoogle Scholar
  13. 13.
    P. Liu, Y. Huang, J. Yan, Y. Yang, Y. Zhao, Construction of CuS nanoflakes vertically aligned on magnetically decorated graphene and their enhanced microwave absorption properties. ACS Appl. Mater. Interfaces 8, 5536–5546 (2016)CrossRefGoogle Scholar
  14. 14.
    M. Yu, C. Liang, M. Liu, X. Liu, K. Yuan, H. Cao, R. Che, Yolk-shell Fe3O4@ZrO2 prepared by a tunable polymer surfactant assisted sol–gel method for high temperature stable microwave absorption. J. Mater. Chem. C 2, 7275–7283 (2014)CrossRefGoogle Scholar
  15. 15.
    G. Wu, Y. Cheng, Y. Ren, Y. Wang, Z. Wang, H. Wu, Synthesis and characterization of gamma-Fe2O3@C nanorod-carbon sphere composite and its application as microwave absorbing material. J. Alloys Compd. 652, 346–350 (2015)CrossRefGoogle Scholar
  16. 16.
    Z. Qiu, Y. Peng, D. He, Y. Wang, S. Chen, Ternary Fe3O4@C@PANi nanocomposites as high-performance supercapacitor electrode materials. J. Mater. Sci. 53, 12322–12333 (2018)CrossRefGoogle Scholar
  17. 17.
    W. Liu, Q. Shao, G. Ji, X. Liang, Y. Cheng, B. Quan, Y. Du, Metal–organic-frameworks derived porous carbon-wrapped Ni composites with optimized impedance matching as excellent lightweight electromagnetic wave absorber. Chem. Eng. J. 313, 734–744 (2017)CrossRefGoogle Scholar
  18. 18.
    Y. Wang, Y. Du, D. Guo, R. Qiang, C. Tian, P. Xu, X. Han, Precursor-directed synthesis of porous cobalt assemblies with tunable close-packed hexagonal and face-centered cubic phases for the effective enhancement in microwave absorption. J. Mater. Sci. 52, 4399–4411 (2016)CrossRefGoogle Scholar
  19. 19.
    Y. Hou, L. Cheng, Y. Zhang, Y. Yang, C. Deng, Z. Yang, Q. Chen, P. Wang, L. Zheng, Electrospinning of Fe/SiC hybrid fibers for highly efficient microwave absorption. ACS Appl. Mater. Interfaces 9, 7265–7271 (2017)CrossRefGoogle Scholar
  20. 20.
    Y. Pang, X. Xie, D. Li, W. Chou, T. Liu, Microporous Ni@NiO nanoparticles prepared by chemically dealloying Al3Ni2@Al nanoparticles as a high microwave absorption material. J. Magn. Magn. Mater. 426, 211–216 (2017)CrossRefGoogle Scholar
  21. 21.
    J. Deng, X. Zhang, B. Zhao, Z. Bai, S. Wen, S. Li, S. Li, J. Yang, R. Zhang, Fluffy microrods to heighten the microwave absorption properties through tuning the electronic state of Co/CoO. J. Mater. Chem. C 6, 7128–7140 (2018)CrossRefGoogle Scholar
  22. 22.
    H. Wu, G. Wu, L. Wang, Peculiar porous alpha-Fe2O3, gamma-Fe2O3 and Fe3O4 nanospheres: Facile synthesis and electromagnetic properties. Powder Technol. 269, 443–451 (2015)CrossRefGoogle Scholar
  23. 23.
    H. Pang, A.M. Abdalla, R.P. Sahu, Y. Duan, I.K. Puri, Low-temperature synthesis of manganese oxide–carbon nanotube-enhanced microwave-absorbing nanocomposites. J. Mater. Sci. 53, 16288–16302 (2018)CrossRefGoogle Scholar
  24. 24.
    H. Wang, L. Xiang, W. Wei, J. An, J. He, C. Gong, Y. Hou, Efficient and lightweight electromagnetic wave absorber derived from metal organic framework-encapsulated cobalt nanoparticles. ACS Appl. Mater. Interfaces 9, 42102–42110 (2017)CrossRefGoogle Scholar
  25. 25.
    X.H. Li, J. Feng, Y.P. Du, J.T. Bai, H.M. Fan, H.L. Zhang, Y. Peng, F.S. Li, One-pot synthesis of CoFe2O4/graphene oxide hybrids and their conversion into FeCo/graphene hybrids for lightweight and highly efficient microwave absorber. J. Mater. Chem. A 3, 5535–5546 (2015)CrossRefGoogle Scholar
  26. 26.
    C. Sun, Y. Guo, X. Xu, Q. Du, H. Duan, Y. Chen, H. Li, H. Liu, In situ preparation of carbon/Fe3C composite nanofibers with excellent electromagnetic wave absorption properties. Compos. Part A 92, 33–41 (2017)CrossRefGoogle Scholar
  27. 27.
    G. Wang, Z. Gao, S. Tang, C. Chen, F. Duan, S. Zhao, S. Lin, Y. Feng, L. Zhou, Y. Qin, Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition. ACS Nano 6, 11009–11017 (2012)CrossRefGoogle Scholar
  28. 28.
    Y. Zhang, X. Zhang, B. Quan, G. Ji, X. Liang, W. Liu, Y. Du, A facile self-template strategy for synthesizing 1D porous Ni@C nanorods towards efficient microwave absorption. Nanotechnology 28, 115704 (2017)CrossRefGoogle Scholar
  29. 29.
    T. Liu, X.B. Xie, Y. Pang, S. Kobayashi, Co/C nanoparticles with low graphitization degree: a high performance microwave-absorbing material. J. Mater. Chem. C 4, 1727–1735 (2016)CrossRefGoogle Scholar
  30. 30.
    X. Lu, Y. Wu, H. Cai, X. Qu, L. Ni, C. Teng, Y. Zhu, L. Jiang, Fe3O4 nanopearl decorated carbon nanotubes stemming from carbon onions with self-cleaning and microwave absorption properties. RSC Adv. 5, 54175–54181 (2015)CrossRefGoogle Scholar
  31. 31.
    Y. Li, Y. Zhao, X. Lu, Y. Zhu, L. Jiang, Self-healing superhydrophobic polyvinylidene fluoride/Fe3O4@polypyrrole fiber with core–sheath structures for superior microwave absorption. Nano Res. 9, 2034–2045 (2016)CrossRefGoogle Scholar
  32. 32.
    N.A.M. Barakat, B. Kim, S.J. Park, Y. Jo, M.-H. Jung, H.Y. Kim, Cobalt nanofibers encapsulated in a graphite shell by an electrospinning process. J. Mater. Chem. 19, 7371 (2009)CrossRefGoogle Scholar
  33. 33.
    Y. Shen, Y. Wei, J. Ma, Q. Li, J. Li, W. Shao, P. Yan, G. Huang, X. Du, Tunable microwave absorption properties of nickel-carbon nanofibers prepared by electrospinning. Ceram. Int. 45, 3313–3324 (2019)CrossRefGoogle Scholar
  34. 34.
    H. Wu, R. Zhang, X. Liu, D. Lin, W. Pan, Electrospinning of Fe, Co, and Ni nanofibers: synthesis, assembly, and magnetic properties. Chem. Mater. 19, 3506–3511 (2007)CrossRefGoogle Scholar
  35. 35.
    L. Sun, C.L. Chien, P.C. Searson, Fabrication of nanoporous nickel by electrochemical dealloying. Chem. Mater. 16, 3125–3129 (2004)CrossRefGoogle Scholar
  36. 36.
    G. Pan, J. Zhu, S. Ma, G. Sun, X. Yang, Enhancing the electromagnetic performance of Co through the phase-controlled synthesis of hexagonal and cubic Co nanocrystals grown on graphene. ACS Appl. Mater. Interfaces 5, 12716–12724 (2013)CrossRefGoogle Scholar
  37. 37.
    V.A. Markel, Can the imaginary part of permeability be negative?. Phys. Rev. E 78, (2008)Google Scholar
  38. 38.
    M. Maglione, M.A. Subramanian, Dielectric and polarization experiments in high loss dielectrics: a word of caution. Appl. Phys. Lett. 93, (2008)Google Scholar
  39. 39.
    F. Wang, Y. Sun, D. Li, B. Zhong, Z. Wu, S. Zuo, D. Yan, R. Zhuo, J. Feng, P. Yan, Microwave absorption properties of 3D cross-linked Fe/C porous nanofibers prepared by electrospinning. Carbon 134, 264–273 (2018)CrossRefGoogle Scholar
  40. 40.
    Z.L. Hou, M. Zhang, L.B. Kong, H.M. Fang, Z.J. Li, H.F. Zhou, H.B. Jin, M.S. Cao, Microwave permittivity and permeability experiments in high-loss dielectrics: caution with implicit fabry-perot resonance for negative imaginary permeability. Appl. Phys. Lett. 103, (2013)Google Scholar
  41. 41.
    X.K. Zhang, J. Xiang, Z.P. Wu, M. Liu, X.Q. Shen, Co content on absorption property of C/Co nanofibers as a lightweight microwave absorber. J. Inorg. Mater. 32, 1299–1307 (2017)CrossRefGoogle Scholar
  42. 42.
    T. Wu, Y. Liu, X. Zeng, T. Cui, Y. Zhao, Y. Li, G. Tong, Facile hydrothermal synthesis of Fe3O4/C Core–Shell nanorings for efficient low-frequency microwave absorption. ACS Appl. Mater. Interfaces 8, 7370–7380 (2016)CrossRefGoogle Scholar
  43. 43.
    C. Tian, Y. Du, P. Xu, R. Qiang, Y. Wang, D. Ding, J. Xue, J. Ma, H. Zhao, X. Han, Constructing uniform Core–Shell PPy@PANI composites with tunable shell thickness toward enhancement in microwave absorption. ACS Appl. Mater. Interfaces 7, 20090–20099 (2015)CrossRefGoogle Scholar
  44. 44.
    M. Qiao, X. Lei, Y. Ma, L. Tian, W. Wang, K. Su, Q. Zhang, Facile synthesis and enhanced electromagnetic microwave absorption performance for porous core-shell Fe3O4@MnO2 composite microspheres with lightweight feature. J. Alloys Compd. 693, 432–439 (2017)CrossRefGoogle Scholar
  45. 45.
    A. Aharoni, Exchange resonance modes in a ferromagnetic sphere. J. Appl. Phys. 69, 7762–7764 (1991)CrossRefGoogle Scholar
  46. 46.
    X. Jian, B. Wu, Y. Wei, S.X. Dou, X. Wang, W. He, N. Mahmood, Facile synthesis of Fe3O4/GCs composites and their enhanced microwave absorption properties. ACS Appl. Mater. Interfaces 8, 6101–6109 (2016)CrossRefGoogle Scholar
  47. 47.
    X. Wang, B. Zhang, W. Zhang, M. Yu, L. Cui, X. Cao, J. Liu, Super-light Cu@Ni nanowires/graphene oxide composites for significantly enhanced microwave absorption performance. Sci. Rep. 7, 1584 (2017)CrossRefGoogle Scholar
  48. 48.
    X. Zheng, J. Feng, Y. Zong, H. Miao, X. Hu, J. Bai, X. Li, Hydrophobic graphene nanosheets decorated by monodispersed superparamagnetic Fe3O4 nanocrystals as synergistic electromagnetic wave absorbers. J. Mater. Chem. C 3, 4452–4463 (2015)CrossRefGoogle Scholar
  49. 49.
    Y. Lan, X. Li, Y. Zong, Z. Li, Y. Sun, G. Tan, J. Feng, Z. Ren, X. Zheng, In-situ synthesis of carbon nanotubes decorated by magnetite nanoclusters and their applications as highly efficient and enhanced microwave absorber. Ceram. Int. 42, 19110–19118 (2016)CrossRefGoogle Scholar
  50. 50.
    X. Zhang, G. Ji, W. Liu, X. Zhang, Q. Gao, Y. Li, Y. Du, A novel Co/TiO2 nanocomposite derived from a metal-organic framework: synthesis and efficient microwave absorption. J. Mater. Chem. C 4, 1860–1870 (2016)CrossRefGoogle Scholar
  51. 51.
    D. Ding, Y. Wang, X. Li, R. Qiang, P. Xu, W. Chu, X. Han, Y. Du, Rational design of core-shell Co@C microspheres for high-performance microwave absorption. Carbon 111, 722–732 (2017)CrossRefGoogle Scholar
  52. 52.
    W. Li, H. Qi, F. Guo, Y. Du, N. Song, Y. Liu, Y. Chen, Co nanoparticles supported on cotton-based carbon fibers: a novel broadband microwave absorbent. J. Alloys Compd. 772, 760–769 (2019)CrossRefGoogle Scholar
  53. 53.
    Z. Li, X. Han, Y. Ma, D. Liu, Y. Wang, P. Xu, C. Li, Y. Du, MOFs-derived hollow Co/C microspheres with enhanced microwave absorption performance. Acs Sustain. Chem. Eng. 6, 8904–8913 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Key Laboratory of Nonferrous Metal alloys and Processing, Ministry of Education, School of Materials Science & EngineeringLanzhou University of TechnologyLanzhouPeople’s Republic of China
  2. 2.Key Laboratory of Magnetism and Magnetic Materials of the Ministry of EducationLanzhou UniversityLanzhouPeople’s Republic of China
  3. 3.College of Chemistry and Chemical EngineeringNorthwest Normal UniversityLanzhouPeople’s Republic of China

Personalised recommendations