Microwave absorption properties of SiO2 doped furan resin derived carbon particles

  • Lan Long
  • Wei ZhouEmail author
  • Peng Xiao
  • Yang LiEmail author


Aiming to tailor microwave absorption properties of furan resin derived carbon (FRC) which is expected using as matrix in carbon/carbon composites (C/C) for microwave absorption, SiO2 doped furan resin derived carbon (SFRC) particles were prepared and their dielectric behavior and microwave absorption capability were investigated. Results indicated that compared with pure FRC particles, complex permittivity of SFRC particles decreases significantly, which is mainly ascribed to the greatly decreased electrical conductivity. Due to improved microwave impedance and relative high dielectric loss, FRC particles doped by 20 wt% SiO2 show enhanced microwave absorption performance. However, when SiO2 is increased to 40 wt%, the microwave absorption property is weakened because of low attenuation capability. SFRC could potentially be used as a suitable carbon matrix to prepare C/C with favorable microwave absorption capability.



This work was supported by the National Natural Science Foundation of China (51604107).


  1. 1.
    Z. Chen, C. Xu, C. Ma, W. Ren, H. Cheng, Adv. Mater. (2013). Google Scholar
  2. 2.
    A.K. Singh, A. Shishkin, T. Koppel, N. Gupta, Compos. B (2018). Google Scholar
  3. 3.
    S.E. Zakiyan, H. Azizi, I. Ghasemi, Compos. Sci. Technol. (2018). Google Scholar
  4. 4.
    H. Wu, S. Qu, K. Lin, Powder Technol. (2018). Google Scholar
  5. 5.
    A. Kolanowska, D. Janas, A.P. Herman, R.G. Jędrysiak, T. Giżewski, S. Boncel, Carbon (2018). Google Scholar
  6. 6.
    M. Letellier, J. Macutkevic, P. Kuzhir, J. Banys, V. Fierro, A. Celzard, Carbon (2017). Google Scholar
  7. 7.
    H. Wu, G. Wu, Y. Ren, L. Yang, L. Wang, X. Li, J. Mater. Chem. C (2015). Google Scholar
  8. 8.
    D. Lan, M. Qin, R. Yang, J. Colloid Interface Sci. (2019). Google Scholar
  9. 9.
    C. Mao-Sheng, Y. Jian, S. Wei-Li, Acs Appl. Mater. Interfaces (2012). Google Scholar
  10. 10.
    W.-L. Song, M.-S. Cao, M.-M. Lu, J. Liu, J. Yuan, L.-Z. Fan, J. Mater. Chem. C (2013). Google Scholar
  11. 11.
    W.L. Song, X.T. Guan, L.Z. Fan, Carbon (2016). Google Scholar
  12. 12.
    H. Wu, G. Wu, L. Wang, Powder Technol. (2015). Google Scholar
  13. 13.
    B. Wen, M. Cao, M. Lu, Adv. Mater. (2014). Google Scholar
  14. 14.
  15. 15.
    X. Luo, D.D.L. Chung, Compos. B (1999). Google Scholar
  16. 16.
    G. Wu, Y. Cheng, Y. Ren, Y. Wang, Z. Wang, H. Wu, J. Alloy. Compd. (2015). Google Scholar
  17. 17.
    Y. Wang, W. Wang, J. Sun, C. Sun, Y. Feng, Z. Li, Carbon (2018). Google Scholar
  18. 18.
    X. Wang, X. Bao, X. Zhou, G. Shi, J. Alloy. Compd. (2018). Google Scholar
  19. 19.
    Y. Wei, J. Yue, X.-Z. Tang, Z. Du, X. Huang, Appl. Surf. Sci. (2018). Google Scholar
  20. 20.
    W. Zhou, L. Long, P. Xiao, Ceram. Int. (2017). Google Scholar
  21. 21.
    M. Gholampoor, F. Movassagh-Alanagh, H. Salimkhani, Solid State Sci. (2017). Google Scholar
  22. 22.
    H. Salimkhani, A. Motei Dizaji, E. Hashemi, P. Palmeh, G. Sabeghi, S. Salimkhani, Ceram. Int. (2016). Google Scholar
  23. 23.
  24. 24.
    W. Zhou, P. Xiao, Y. Li, Appl. Surf. Sci. (2012). Google Scholar
  25. 25.
    H.L. Ding, Y.X. Zhang, S. Wang, J.M. Xu, S.C. Xu, G.H. Li, Chem. Mater. (2012). Google Scholar
  26. 26.
    Y. Wang, Y. Lai, S. Wang, W. Jiang, Ceram. Int. (2017). Google Scholar
  27. 27.
    B. Wen, M.-S. Cao, Z.-L. Hou, Carbon (2013). Google Scholar
  28. 28.
    C. Ge, L. Wang, G. Liu, T. Wang, J. Alloy. Compd. (2018). Google Scholar
  29. 29.
    Y. Liu, Y. Li, F. Luo, J. Alloy. Compd. (2017). Google Scholar
  30. 30.
    M.-S. Cao, X.-L. Shi, X.-Y. Fang, Appl. Phys. Lett. (2007). Google Scholar
  31. 31.
    X. Yuan, L. Cheng, L. Zhang, J. Alloys Compd. (2016). Google Scholar
  32. 32.
    X. Yuan, L. Cheng, S. Guo, L. Zhang, Ceram. Int. (2017). Google Scholar
  33. 33.
    X. Ji, W. Zhang, W. Jia, J. Ind. Eng. Chem. (2017). Google Scholar
  34. 34.
    W. Song, M. Cao, Z. Hou, X. Fang, X. Shi, J. Yuan, Appl. Phys. Lett. (2009). Google Scholar
  35. 35.
    M.-S. Cao, W.-L. Song, Z.-L. Hou, B. Wen, J. Yuan, Carbon (2010). Google Scholar
  36. 36.
    J.E. Atwater, J.R.R. Wheeler, Appl. Phys. A (2004). Google Scholar
  37. 37.
    W. Zhou, P. Xiao, Y. Li, L. Zhou, Ceram. Int. (2013). Google Scholar
  38. 38.
    R.C. Che, L.M. Peng, X.F. Duan, Q. Chen, X.L. Liang, Adv. Mater. (2004). Google Scholar
  39. 39.
    Z.W. Li, G.Q. Lin, Y.P. Wu, L.B. Kong, IEEE Trans. Magn. (2009). Google Scholar
  40. 40.
    F. Qin, C. Brosseau, J. Appl. Phys. (2012). Google Scholar
  41. 41.
    M. Cao, X. Wang, W. Cao, X. Fang, B. Wen, J. Yuan, Small (2018). Google Scholar
  42. 42.
    W. Cao, X. Wang, J. Yuan, W. Wang, M. Cao, J. Mater. Chem. C (2015). Google Scholar
  43. 43.
    T. Inui, K. Konishi, K. Oda, IEEE Trans. Magn. (1999). Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Life Sciences and ChemistryHunan University of TechnologyZhuzhouChina
  2. 2.College of Metallurgy and Materials EngineeringHunan University of TechnologyZhuzhouChina
  3. 3.State Key Laboratory of Powder MetallurgyCentral South UniversityChangshaChina

Personalised recommendations