Advertisement

Microwave absorption properties of SiO2 doped furan resin derived carbon particles

  • Lan Long
  • Wei ZhouEmail author
  • Peng Xiao
  • Yang LiEmail author
Article
  • 15 Downloads

Abstract

Aiming to tailor microwave absorption properties of furan resin derived carbon (FRC) which is expected using as matrix in carbon/carbon composites (C/C) for microwave absorption, SiO2 doped furan resin derived carbon (SFRC) particles were prepared and their dielectric behavior and microwave absorption capability were investigated. Results indicated that compared with pure FRC particles, complex permittivity of SFRC particles decreases significantly, which is mainly ascribed to the greatly decreased electrical conductivity. Due to improved microwave impedance and relative high dielectric loss, FRC particles doped by 20 wt% SiO2 show enhanced microwave absorption performance. However, when SiO2 is increased to 40 wt%, the microwave absorption property is weakened because of low attenuation capability. SFRC could potentially be used as a suitable carbon matrix to prepare C/C with favorable microwave absorption capability.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51604107).

References

  1. 1.
    Z. Chen, C. Xu, C. Ma, W. Ren, H. Cheng, Adv. Mater. (2013).  https://doi.org/10.1002/adma.201204196 Google Scholar
  2. 2.
    A.K. Singh, A. Shishkin, T. Koppel, N. Gupta, Compos. B (2018).  https://doi.org/10.1016/j.compositesb.2018.05.027 Google Scholar
  3. 3.
    S.E. Zakiyan, H. Azizi, I. Ghasemi, Compos. Sci. Technol. (2018).  https://doi.org/10.1016/j.compscitech.2018.02.002 Google Scholar
  4. 4.
    H. Wu, S. Qu, K. Lin, Powder Technol. (2018).  https://doi.org/10.1016/j.powtec.2018.04.015 Google Scholar
  5. 5.
    A. Kolanowska, D. Janas, A.P. Herman, R.G. Jędrysiak, T. Giżewski, S. Boncel, Carbon (2018).  https://doi.org/10.1016/j.carbon.2017.09.078 Google Scholar
  6. 6.
    M. Letellier, J. Macutkevic, P. Kuzhir, J. Banys, V. Fierro, A. Celzard, Carbon (2017).  https://doi.org/10.1016/j.carbon.2017.06.080 Google Scholar
  7. 7.
    H. Wu, G. Wu, Y. Ren, L. Yang, L. Wang, X. Li, J. Mater. Chem. C (2015).  https://doi.org/10.1039/C5TC01716E Google Scholar
  8. 8.
    D. Lan, M. Qin, R. Yang, J. Colloid Interface Sci. (2019).  https://doi.org/10.1016/j.jcis.2018.08.108 Google Scholar
  9. 9.
    C. Mao-Sheng, Y. Jian, S. Wei-Li, Acs Appl. Mater. Interfaces (2012).  https://doi.org/10.1021/am3021069 Google Scholar
  10. 10.
    W.-L. Song, M.-S. Cao, M.-M. Lu, J. Liu, J. Yuan, L.-Z. Fan, J. Mater. Chem. C (2013).  https://doi.org/10.1039/C2TC00494A Google Scholar
  11. 11.
    W.L. Song, X.T. Guan, L.Z. Fan, Carbon (2016).  https://doi.org/10.1016/j.carbon.2016.01.002 Google Scholar
  12. 12.
    H. Wu, G. Wu, L. Wang, Powder Technol. (2015).  https://doi.org/10.1016/j.powtec.2014.09.045 Google Scholar
  13. 13.
    B. Wen, M. Cao, M. Lu, Adv. Mater. (2014).  https://doi.org/10.1002/adma.201400108 Google Scholar
  14. 14.
  15. 15.
    X. Luo, D.D.L. Chung, Compos. B (1999).  https://doi.org/10.1016/S1359-8368(98)00065-1 Google Scholar
  16. 16.
    G. Wu, Y. Cheng, Y. Ren, Y. Wang, Z. Wang, H. Wu, J. Alloy. Compd. (2015).  https://doi.org/10.1016/j.jallcom.2015.08.236 Google Scholar
  17. 17.
    Y. Wang, W. Wang, J. Sun, C. Sun, Y. Feng, Z. Li, Carbon (2018).  https://doi.org/10.1016/j.carbon.2018.04.026 Google Scholar
  18. 18.
    X. Wang, X. Bao, X. Zhou, G. Shi, J. Alloy. Compd. (2018).  https://doi.org/10.1016/j.jallcom.2018.06.150 Google Scholar
  19. 19.
    Y. Wei, J. Yue, X.-Z. Tang, Z. Du, X. Huang, Appl. Surf. Sci. (2018).  https://doi.org/10.1016/j.apsusc.2017.09.079 Google Scholar
  20. 20.
    W. Zhou, L. Long, P. Xiao, Ceram. Int. (2017).  https://doi.org/10.1016/j.ceramint.2017.01.095 Google Scholar
  21. 21.
    M. Gholampoor, F. Movassagh-Alanagh, H. Salimkhani, Solid State Sci. (2017).  https://doi.org/10.1016/j.solidstatesciences.2016.12.005 Google Scholar
  22. 22.
    H. Salimkhani, A. Motei Dizaji, E. Hashemi, P. Palmeh, G. Sabeghi, S. Salimkhani, Ceram. Int. (2016).  https://doi.org/10.1016/j.ceramint.2016.04.185 Google Scholar
  23. 23.
  24. 24.
    W. Zhou, P. Xiao, Y. Li, Appl. Surf. Sci. (2012).  https://doi.org/10.1016/j.apsusc.2012.03.107 Google Scholar
  25. 25.
    H.L. Ding, Y.X. Zhang, S. Wang, J.M. Xu, S.C. Xu, G.H. Li, Chem. Mater. (2012).  https://doi.org/10.1021/cm302828d Google Scholar
  26. 26.
    Y. Wang, Y. Lai, S. Wang, W. Jiang, Ceram. Int. (2017).  https://doi.org/10.1016/j.ceramint.2016.10.148 Google Scholar
  27. 27.
    B. Wen, M.-S. Cao, Z.-L. Hou, Carbon (2013).  https://doi.org/10.1016/j.carbon.2013.07.110 Google Scholar
  28. 28.
    C. Ge, L. Wang, G. Liu, T. Wang, J. Alloy. Compd. (2018).  https://doi.org/10.1016/j.jallcom.2018.07.081 Google Scholar
  29. 29.
    Y. Liu, Y. Li, F. Luo, J. Alloy. Compd. (2017).  https://doi.org/10.1016/j.jallcom.2017.04.301 Google Scholar
  30. 30.
    M.-S. Cao, X.-L. Shi, X.-Y. Fang, Appl. Phys. Lett. (2007).  https://doi.org/10.1063/1.2803764 Google Scholar
  31. 31.
    X. Yuan, L. Cheng, L. Zhang, J. Alloys Compd. (2016).  https://doi.org/10.1016/j.jallcom.2016.03.309 Google Scholar
  32. 32.
    X. Yuan, L. Cheng, S. Guo, L. Zhang, Ceram. Int. (2017).  https://doi.org/10.1016/j.ceramint.2016.09.151 Google Scholar
  33. 33.
    X. Ji, W. Zhang, W. Jia, J. Ind. Eng. Chem. (2017).  https://doi.org/10.1016/j.jiec.2017.07.013 Google Scholar
  34. 34.
    W. Song, M. Cao, Z. Hou, X. Fang, X. Shi, J. Yuan, Appl. Phys. Lett. (2009).  https://doi.org/10.1063/1.3152764 Google Scholar
  35. 35.
    M.-S. Cao, W.-L. Song, Z.-L. Hou, B. Wen, J. Yuan, Carbon (2010).  https://doi.org/10.1016/j.carbon.2009.10.028 Google Scholar
  36. 36.
    J.E. Atwater, J.R.R. Wheeler, Appl. Phys. A (2004).  https://doi.org/10.1007/s00339-003-2329-8 Google Scholar
  37. 37.
    W. Zhou, P. Xiao, Y. Li, L. Zhou, Ceram. Int. (2013).  https://doi.org/10.1016/j.ceramint.2013.01.090 Google Scholar
  38. 38.
    R.C. Che, L.M. Peng, X.F. Duan, Q. Chen, X.L. Liang, Adv. Mater. (2004).  https://doi.org/10.1002/adma.200306460 Google Scholar
  39. 39.
    Z.W. Li, G.Q. Lin, Y.P. Wu, L.B. Kong, IEEE Trans. Magn. (2009).  https://doi.org/10.1109/TMAG.2008.2007757 Google Scholar
  40. 40.
    F. Qin, C. Brosseau, J. Appl. Phys. (2012).  https://doi.org/10.1063/1.3688435 Google Scholar
  41. 41.
    M. Cao, X. Wang, W. Cao, X. Fang, B. Wen, J. Yuan, Small (2018).  https://doi.org/10.1002/smll.201800987 Google Scholar
  42. 42.
    W. Cao, X. Wang, J. Yuan, W. Wang, M. Cao, J. Mater. Chem. C (2015).  https://doi.org/10.1039/C5TC02185E Google Scholar
  43. 43.
    T. Inui, K. Konishi, K. Oda, IEEE Trans. Magn. (1999).  https://doi.org/10.1109/20.801110 Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Life Sciences and ChemistryHunan University of TechnologyZhuzhouChina
  2. 2.College of Metallurgy and Materials EngineeringHunan University of TechnologyZhuzhouChina
  3. 3.State Key Laboratory of Powder MetallurgyCentral South UniversityChangshaChina

Personalised recommendations