Synthesis and characterization of photoactive material Cu2NiSnS4 thin films

  • Adel ChihiEmail author
  • Mohamed Fethi Boujmil
  • Brahim Bessais


In this work, we fabricated photoactive material copper–nickel–tin–sulphide Cu2NiSnS4 (CNTS) thin films on indium-doped tin oxide (ITO) coated glass substrates via an easy electrodeposition technique. The CNTS films have been characterized by different methods such as X-ray diffraction (XRD), Raman spectroscopy, atomic force microscopy (AFM), UV–vis spectrophotometer, electrochemical impedance spectroscopy (EIS) and Hall effect measurements. Both XRD patterns and Raman spectra confirmed the formation of a polycrystalline CNTS single phase without any secondary phases. AFM studies of the CNTS samples showed that morphology depends on the electrodeposition time. It was also found that the optical band gap redshifts from 1.74 to 1.52 eV as the film thickness rises from 450 to 1560 nm. The Nyquist plots obtained from EIS of the planar junction CNTS/electrolyte showed the existence of one semicircle, which was modeled by an equivalent electrical circuit thanks to the Randles model. The best photocathode for PEC water splitting was obtained for the sample with the optimized thickness of 1250 nm. From Hall effect measurement, it is inferred that the CNTS thin films of thickness 1250 nm have a positive Hall coefficient (RH), carrier’s density ~ 2.9 × 1016 cm−3, Hall mobility ~ 120 cm2 V−1 s−1 and electrical resistivity ~ 0.54 Ω cm.



The authors appreciatively acknowledge financial support from the Ministry of Higher Education, Scientific Research and Technology of Tunisia.


  1. 1.
    A. Fujishima, K. Honda, Nature 238, 37 (1972)CrossRefGoogle Scholar
  2. 2.
    X. Liu, F. Wang, Q. Wang, Phys. Chem. Chem. Phys 14, 7894 (2012)CrossRefGoogle Scholar
  3. 3.
    D. Valerini, S. Hernández, F.D. Benedetto, N. Russo, G. Saracco, A. Rizzo, Mater. Sci. Semicond. Process. 42, 150 (2016)CrossRefGoogle Scholar
  4. 4.
    X.P. Qi, G.W. She, X. Huang, T.P. Zhang, H.M. Wang, L.X. Mu, W.S. Shi, Nanoscale 6, 3182 (2014)CrossRefGoogle Scholar
  5. 5.
    Z.S. Li, W.J. Luo, M.L. Zhang, J.Y. Feng, Z.G. Zou, Energy Environ. Sci. 6, 347-370 (2013)Google Scholar
  6. 6.
    S. Hernández, G. Saracco, G. Barbero, A.L.A. Ionescu, J. Electroanal. Chem 799, 481 (2017)CrossRefGoogle Scholar
  7. 7.
    S.P. Berglund, F.F. Abdi, P. Bogdanoff, A. Chemseddine, D. Friedrich, R. Van De Krol, Chem. Mater 28, 4231 (2016)CrossRefGoogle Scholar
  8. 8.
    M. Vishwakarma, D. Varandani, S.M. Shivaprasad, B.R. Mehta, ‎Sol. Energy Mater. Sol. Cells 174, 577 (2018)CrossRefGoogle Scholar
  9. 9.
    B.A. MacLeod, K.X. Steirer, J.L. Young, U. Koldemir, A. Sellinger, J.A. Turner, T.G. Deutsch, D.C. Olson, ACS Appl. Mater. Interfaces 7, 11346 (2015)CrossRefGoogle Scholar
  10. 10.
    F. Oliva, S. Kretzschmar, D. Colombara, S. Tombolato, C.M.D. Ruiz, A.B. Redinger, E. Saucedo, C. Broussillou, T.G. De Monsabert, T. Unold, P.J. Dale, V.I. Roca, A.P. Rodríguez, ‎Sol. Energy Mater. Sol. Cells 158, 168 (2016)CrossRefGoogle Scholar
  11. 11.
    M. Suryawanshi, S.W. Shin, U. Ghorpade, D. Song, C.W. Hong, S.S. Han, J. Heo, S.H. Kang, J.H. Kim, J. Mater. Chem. 5, 4695 (2017)CrossRefGoogle Scholar
  12. 12.
    J. Kim, W. Yang, Y. Oh, J. Kim, J. Moon, J. Alloys Compd. 691, 457 (2017)CrossRefGoogle Scholar
  13. 13.
    K. Woo, Y. Kim, J. Moon, Energy Environ. Sci. 5, 5340 (2012)CrossRefGoogle Scholar
  14. 14.
    A. Chihi, B. Bessais, RSC Adv. 7, 29469 (2017)CrossRefGoogle Scholar
  15. 15.
    L. Liang, Y. Sun, F. Lei, S. Gao, Y. Xie, J. Mater. Chem. A 2, 10647 (2014)CrossRefGoogle Scholar
  16. 16.
    A. Ghosh, A. Biswas, R. Thangavel, G. Udayabhanu, RSC Adv. 6, 96025 (2016)CrossRefGoogle Scholar
  17. 17.
    K. Mokurala, S. Mallick, P. Bhargava, S. Siol, T.R. Kleina, M.F.A.M. van Hest, J. Alloys Compd. 725, 510 (2017)CrossRefGoogle Scholar
  18. 18.
    D. Bae, T. Pedersen, B. Seger, M. Malizia, A. Kuznetsov, O. Hansen, I. Chorkendorff, P.C.K. Vesborg, Energy Environ. Sci. 8, 650 (2015)CrossRefGoogle Scholar
  19. 19.
    C. Shi, G. Shi, Z. Chen, P. Yang, M. Yao, Mater. Lett. 73, 89 (2012)CrossRefGoogle Scholar
  20. 20.
    H.J. Chen, S.W. Fu, T.C. Tsai, C.F. Shih, Mater. Lett. 166, 215 (2016)CrossRefGoogle Scholar
  21. 21.
    C.L. Yang, Y.H. Chen, M. Lin, S.L. Wu, L. Li, W.C. Liu, X.S. Wu, F.M. Zhang, Mater. Lett. 166, 101 (2016)CrossRefGoogle Scholar
  22. 22.
    L. Shi, Y. Li, R. Zheng, ChemPlusChem 80, 1533 (2015)CrossRefGoogle Scholar
  23. 23.
    F. Ozel, J. Alloys Compd. 657, 157 (2016)CrossRefGoogle Scholar
  24. 24.
    A. Kamble, K. Mokurala, A. Gupta, S. Mallick, P. Bhargava, Mater. Lett. 137, 440 (2014)CrossRefGoogle Scholar
  25. 25.
    S. Rondiya, N. Wadnerkar, Y. Jadhav, S. Jadkar, S. Haram, M. Kabir, Chem. Mater. 29, 3133 (2017)CrossRefGoogle Scholar
  26. 26.
    Y. Yang, D. Xu, Q. Wu, P. Diao, Sci. Rep. 6, 35158 (2016)CrossRefGoogle Scholar
  27. 27.
    A. Chihi, B. Bessais, J. Electron. Mater. 46, 354 (2017)CrossRefGoogle Scholar
  28. 28.
    C.P. Liu, H.G. Yang, Mater. Chem. Phys. 86, 370 (2004)CrossRefGoogle Scholar
  29. 29.
    B. Pejova, B. Abay, J. Phys. Chem. C 115, 23241 (2011)CrossRefGoogle Scholar
  30. 30.
    R. Godbole, V.P. Godbole, P.S. Alegaonkar, S. Bhagwat, New J. Chem. 41, 11807 (2017)CrossRefGoogle Scholar
  31. 31.
    V.V. Ganbavle, S.V. Mohite, G.L. Agawane, J.H. Kim, K.Y. Rajpure, J. Colloid Interface Sci. 451, 245 (2015)CrossRefGoogle Scholar
  32. 32.
    S. Sarkar, B. Das, P.R. Midya, G.C. Das, K.K. Chattopadhyay, Mater. Lett. 152, 155 (2015)CrossRefGoogle Scholar
  33. 33.
    S. Podsiadlo, M. Bialoglowski, M. Fadaghi, W. Gebicki, C. Jastrzebski, E. Zero, D. Trzybinski, K. Wozniak Cryst. Res. Technol. 50, 690 (2015)CrossRefGoogle Scholar
  34. 34.
    T. Gürel, C. Sevik, T. Cagin, Phys. Rev. B 84, 205201 (2011)CrossRefGoogle Scholar
  35. 35.
    M. Kumar, A. Dubey, N. Adhikari, S. Venkatesan, Q. Qiao, Energy Environ. Sci. 8, 3134 (2015)CrossRefGoogle Scholar
  36. 36.
    P. Klapetek, D. Nečas, C. Anderson,
  37. 37.
    Y. Cao, C. Zhou, J. Magn. Magn. Mater 333, 1 (2013)CrossRefGoogle Scholar
  38. 38.
    D. Liu, M.K. Gangishetty, T.L. Kelly, J. Mater. Chem. A 2, 19873 (2014)CrossRefGoogle Scholar
  39. 39.
    J. Jiang, M. Wang, Q. Chen, S. Shen, M. Li, L. Guo, RSC Adv. 4, 10542 (2014)CrossRefGoogle Scholar
  40. 40.
    M.A. Mansoor, N.M. Huang, V. McKee, T.A.N. Peiris, K.G.U. Wijayantha, Z. Arifin, M. Misran, M. Mazhar, Sol. Energy Mater. Sol. Cells 137, 258 (2015)CrossRefGoogle Scholar
  41. 41.
    A.P. Amalathas, M.M. Alkaisi, J. Mater. Sci. Mater. Electron 27, 11064 (2016)CrossRefGoogle Scholar
  42. 42.
    T.S. Reddy, M.C. Santhosh Kumar, RSC Adv. 6, 95680 (2016)CrossRefGoogle Scholar
  43. 43.
    M. Behera, S. Behera, R. Naik, RSC Adv. 7, 18428 (2017)CrossRefGoogle Scholar
  44. 44.
    J. Joy, J. Mathew, S.C. George, ‎Int. J. Hydrog. Energy 43, 4804 (2018)CrossRefGoogle Scholar
  45. 45.
    C. Adel, B.M. Fethi, B. Brahim, Appl. Phys. A 122, 1 (2016)CrossRefGoogle Scholar
  46. 46.
    P. Chal, A. Shit, A.K. Nandi, J. Mater. Chem. C 4, 272 (2016)CrossRefGoogle Scholar
  47. 47.
    V. Nádaždy, K. Gmucová, P. Nádaždy, P. Siffalovic, K. Vegso, M. Jergel, F. Schauer, E. Majkova, J. Phys. Chem. C 122, 5881 (2018)CrossRefGoogle Scholar
  48. 48.
    M. Lee, D. Kim, Y.T. Yoon, Y.I. Kim, Bull. Korean Chem. Soc. 35, 3261–3266 (2014)CrossRefGoogle Scholar
  49. 49.
    S.H. Tamboli, G. Rahman, O.S. Joo, J. Alloys Compd. 520, 232 (2012)CrossRefGoogle Scholar
  50. 50.
    S.M. Panah, R.S. Moakhar, C.S. Chua, A. Kushwaha, T.I. Wong, G.K. Dalapat, RSC Adv. 6, 29383 (2016)CrossRefGoogle Scholar
  51. 51.
    T. Moehl, J. Suh, L. Sévery, R.W. Joliat, S.D. Tilley, ACS Appl Mater Interfaces 9, 43614 (2017)CrossRefGoogle Scholar
  52. 52.
    R. Dom, H.G. Kim, P.H. Borse, CrystEngComm 16, 2432 (2014)CrossRefGoogle Scholar
  53. 53.
    S.K.S. Basha, M.C. Rao, Ceram. Int. 44, 648 (2018)CrossRefGoogle Scholar
  54. 54.
    T.S. Reddy, M.C.S. Kumar, RSC Adv. 6, 95680 (2016)CrossRefGoogle Scholar
  55. 55.
    J.C. Paracchino, J.E. Brauer, E. Moser, M. Thimsen, Graetzel, J. Phys. Chem. C 116, 7341 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Adel Chihi
    • 1
    Email author
  • Mohamed Fethi Boujmil
    • 1
  • Brahim Bessais
    • 1
  1. 1.Photovoltaic Laboratory, Research and Technology Centre of EnergyBorj-Cedria Technology ParkHammam LifTunisia

Personalised recommendations