Advertisement

Role of polyethylene glycol addition on the improvement of P3HT:PCBM organic solar cells

  • Tetsuo SogaEmail author
  • Seiya Kato
  • Shinya Kato
  • Naoki Kishi
Article
  • 75 Downloads

Abstract

In this work, the power conversion efficiency (PCE) of bulk heterojunction organic solar cell is improved by adding PEG (polyethylene glycol) in the solution of P3HT and PCBM blend. The short circuit current and fill factor are increased by adding PEG with the molecular weight of 300, whereas the open circuit voltage is not changed. On the other hand, PCE becomes worse by adding PEG with the molecular weight of 6000. It was observed by field-emission scanning electron microscopy that the additional layer was formed under the active layer during spin coating by phase separation. The stability of solar cell is also improved with introducing the PEG layer. These results were explained by the formation of the PEG interfacial layer under the P3HT:PCBM active layer, which acts as a hole transport layer and also blocks the water diffusion from PEDOT:PSS toward the metal electrode.

Keywords

Organic solar cell Photovoltaic P3HT PCBM Polyethylene glycol Interfacial layer Phase separation 

Notes

Acknowledgements

This work was supported by JSPS KAKENHI Grant Number JP16K04960.

References

  1. 1.
    H. Zhang, W.Y. Tan, S. Fladischer, L. Ke, T. Ameri, N. Li, M. Turbiez, E. Spiecker, X.H. Zhu, Y. Cao, C.J. Brabec, J. Mater. Chem. A 4, 5032 (2016)CrossRefGoogle Scholar
  2. 2.
    D.L. Morel, A.K. Ghosh, T. Feng, E.L. Stogrn, P.E. Purwin, R.F. Shaw, C. Fishman, Appl. Phys. Lett. 32, 495 (1978)CrossRefGoogle Scholar
  3. 3.
    C.W. Tang, Appl. Phys. Lett. 48, 183 (1986)CrossRefGoogle Scholar
  4. 4.
    M. Hiramoto, H. Fujiwara, M. Yokoyama, Appl. Phys. Lett. 58, 1062 (1991)CrossRefGoogle Scholar
  5. 5.
    S.E. Shaheen, C.J. Brabec, F. Padinger, T. Fromherz, J.C. Hummelen, N.S. Sariciftci, Appl. Phys. Lett. 78, 841 (2001)CrossRefGoogle Scholar
  6. 6.
    S. Uchida, J. Xue, B.P. Rand, S.R. Forrest, Appl. Phys. Lett. 84, 421 (2004)CrossRefGoogle Scholar
  7. 7.
    F. Padinger, R.S. Ritterberger, N.S. Sariciftci, Adv. Funct. Mater. 13, 85 (2003)CrossRefGoogle Scholar
  8. 8.
    Y. Kim, S. Cook, S.M. Tuladhar, S.A. Choulis, J. Nelson, J.R. Durrant, D.D.C. Bradley, M. Giles, I. Mc Culloch, C.S. Ha, M. Ree, Nat. Mater. 5, 197 (2006)CrossRefGoogle Scholar
  9. 9.
    W.J. Belcher, K.I. Wagner, P.C. Dastoor, Sol. Energy Mater. Sol. Cells 91, 447 (2007)CrossRefGoogle Scholar
  10. 10.
    S. Li, L. Ye, W. Zhao, S. Zhang, S. Mukherjee, H. Ade, J. Hou, Adv. Mater. 28, 9423 (2016)CrossRefGoogle Scholar
  11. 11.
    F. Zhao, S. Dai, Y. Wu, Q. Zhang, J. Wang, L. Jiang, Q. Ling, Z. Wei, W. Ma, W. You, C. Wang, X. Zhan, Adv. Mater. 29, 1700144 (2017)CrossRefGoogle Scholar
  12. 12.
    X. Li, X. Liu, W. Zhang, H.Q. Wang, J. Fang, Chem. Mater. 29, 4176–4180 (2017)CrossRefGoogle Scholar
  13. 13.
    A. J. Heeger, 25th Anniversary Article: Adv. Mater. 26, 10 (2014)Google Scholar
  14. 14.
    D.M. Conzalez, V. Korstgens, Y. Yao, L. Song, G. Santoro, S.V. Roth, P.M. Buschbaum, Adv. Energy Mater. 5, 1401770 (2015)CrossRefGoogle Scholar
  15. 15.
    X. Zhang, Z. Li, Z. Zhang, S. Li, C. Liu, W. Guo, L. Shen, S. Wen, S. Qu, S. Ruan, J. Phys. Chem. 120, 13954 (2016)Google Scholar
  16. 16.
    H.L. Yip, A.K.Y. Jen, Energy Environ. Sci. 5, 5994 (2016) 5994CrossRefGoogle Scholar
  17. 17.
    B. Qi, Z.G. Zhang, J. Wang, Scientific Reports 5, 7803 (2015)CrossRefGoogle Scholar
  18. 18.
    B. Kadem, W. Cranton, A. Hassan, Org. Electron. 24, 73 (2015)CrossRefGoogle Scholar
  19. 19.
    R. Steim, F.R. Kogler, C.J. Brabec, J. Mater. Chem. 20, 2499 (2010)CrossRefGoogle Scholar
  20. 20.
    T. Soga (ed), Nanostructured Materials for Solar Energy Conversion (Elsevier, Netherland, 2006), Chap. 10, H. Hoppe and N. S. Sariciftci, pp. 277–318Google Scholar
  21. 21.
    H.J. Kim, K.W. Seo, Y.J. Noh, S.I. Na, A. Sohn, D.W. Kim, H.K. Kim, Sol. Energy Mater. Sol. Cells 141, 194 (2015)CrossRefGoogle Scholar
  22. 22.
    R. Steim, S.A. Choulis, P. Schilinsky, C. Brabec, Appl. Phys. Lett. 92, 093303 (2008)CrossRefGoogle Scholar
  23. 23.
    H.H. Liao, L.M. Chen, Z. Xu, G. Li, Y. Yang, Appl. Phys. Lett. 92, 173303 (2008)CrossRefGoogle Scholar
  24. 24.
    M. Deckman, S. Moshonov, R. Obuchovsky, Brener, G.L. Frey, J. Mater. Chem. A2, 16746 (2014)CrossRefGoogle Scholar
  25. 25.
    S.-C. Chen, F.-C. Chen, M.-K. Chung, C.-S. Hsu, J. Phys. Chem. 116, 1354 (2012)Google Scholar
  26. 26.
    B. Qi, J. Wang, J. Mater. Chem. 22, 24315 (2012)CrossRefGoogle Scholar
  27. 27.
    D.A. Mengistie, P.-C. Wang, C.-W. Chu, J. Mater. Chem. A 1, 9907 (2013)CrossRefGoogle Scholar
  28. 28.
    H. Kang, S. Kee, K. Yu, J. Lee, G. Kim, J. Kim, J. Kim, J. Kong, K. Lee, Adv. Mater 27, 1408 (2015)CrossRefGoogle Scholar
  29. 29.
    N. Norrman, F.C. Krebs, Sol. Energy Mater. Sol. Cells 90, 213 (2006)CrossRefGoogle Scholar
  30. 30.
    S.A. Norrman, Gevogyan, F.C. Krebs, ACS Appl. Mater. Interfaces 1, 102 (2009)CrossRefGoogle Scholar
  31. 31.
    M. Wang, F. Xie, J. Du, Q. Tang, S. Zheng, Q. Miao, J. Chen, N. Zhao, J.B. Xu, Sol. Energy Mater. Sol. Cells 95, 3303 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electrical and Mechanical EngineeringNagoya Institute of TechnologyNagoyaJapan

Personalised recommendations