Barium titanate@polyaniline core–shell semiconducting particles reinforced poly(vinylidene fluoride) flexible films with a percolation threshold and high dielectric constant

  • Hai-Yan WangEmail author
  • Xiao-Ting Zhang
  • Jun-Wei Zha
  • Yan-bin You
  • Xiao-bin Yan
  • Zhi-Min DangEmail author


Barium titanate@polyaniline (BT@PANI) core–shell semiconducting particles were prepared by the introduction of polyacrylic acid onto the surface of BT via in-stiu polymerization. Polyvinylidene fluoride (PVDF) based composites filling BT@PANI particles with 3.336 × 10−2 S cm−1 presented positive multiple effect in enhancing dielectric constant of the three-phase composites. A percolation threshold appeared at a BT@PANI loading of 30 wt%, where the composite exhibited a high dielectric constant of 247 at 103 Hz, as well as winding and folding performance. The excellent dielectric behavior could be ascribed to the fact that the BT@PANI/PVDF composites realized multiple dielectric mechanisms, including the sufficient interfacial polarization, the effective BT polarization, and the microcapacitor mechanism. As a result, the novelty ceramic particles/polymer composite films presented a good balance of dielectric performance and mechanical property.



Financial support provided by the National Natural Science Foundation of China (51767016) is gratefully acknowledged.


  1. 1.
    W. Li, L. Jiang, X. Zhang, Y. Shen, C.W. Nan, J. Mater. Chem. A 2, 15803 (2014)CrossRefGoogle Scholar
  2. 2.
    T.D. Huan, S. Boggs, G. Teyssedre, C. Laurent, M. Cakmak, S. Kumar, R. Ramprasad, Prog. Mater. Sci. 83, 236 (2016)CrossRefGoogle Scholar
  3. 3.
    X.W. Peng, W.H. Xu, L.L. Chen, Y.H. Ding, T.X.,S.L. Chen, H.Q. Hou, React. Funct. Polym. 106, 93 (2016)CrossRefGoogle Scholar
  4. 4.
    Q.G. Chi, Z.Y. Gao, C.H. Zhang, Y. Cui, J.F. Dong, X. Wang, Q.Q. Lei, J. Mater. Sci. 28, 15142 (2017)Google Scholar
  5. 5.
    Z.M. Dang, J.K. Yuan, S.H. Yao, R.J. Liao, Adv. Mater. 25, 6334 (2013)CrossRefGoogle Scholar
  6. 6.
    M. Arbatti, X. Shan, Z.Y. Cheng, Adv. Mater. 19, 1369 (2007)CrossRefGoogle Scholar
  7. 7.
    Y. Kobayashi, A. Kosuge, M. Konno, Appl. Surf. Sci. 255, 2723 (2008)CrossRefGoogle Scholar
  8. 8.
    K. Yu, H. Wang, Y. Zhou, Y. Bai, Y. Niu, J. Appl. Phys. 4, 034105 (2013)CrossRefGoogle Scholar
  9. 9.
    N. Kamezawa, D. Nagao, H. Ishii, M. Konno, J. Eur. Polym. 66, 528 (2015)CrossRefGoogle Scholar
  10. 10.
    J. Yan, Y.G. Jeong, Compos. Sci. Technol. 144, 1 (2017)CrossRefGoogle Scholar
  11. 11.
    D.S. Kim, C.Y. Baek, H.J. Ma, D.K. Kimn, Ceram. Int. 42, 7141 (2016)CrossRefGoogle Scholar
  12. 12.
    M.N. Almadhoun, U.S. Bhansali, H.N. Alshareef, J. Mater. Chem. 22, 11196 (2012)CrossRefGoogle Scholar
  13. 13.
    L.J. Yu, Y.F. Zhu, Y.O. Fu, RSC Adv. 58, 36473 (2017)CrossRefGoogle Scholar
  14. 14.
    Y.F. Zhu, Q.Q. Ni, Y.Q. Fu, RSC Adv. 5, 3748 (2015)CrossRefGoogle Scholar
  15. 15.
    Z.M. Dang, Y. Shen, C.W. Nan, Appl. Phys. Lett. 81, 4814 (2002)CrossRefGoogle Scholar
  16. 16.
    X. Huang, Z. Pu, M. Feng, M. Feng, L. Tong, X. Liu, Mater. Lett. 96, 139 (2013)CrossRefGoogle Scholar
  17. 17.
    J.G. Liu, G.F. Tian, S.L. Qi, Z.P. Wu, D.Z. Wu, Mater. Lett. 124, 117 (2014)CrossRefGoogle Scholar
  18. 18.
    S. George, M.T. Sebastian, Compos. Sci. Technol. 69, 1298 (2009)CrossRefGoogle Scholar
  19. 19.
    S.B. Luo, S.H. Yu, R. Sun, C.P. Wong, Appl. Mater. Interface 6, 176 (2014)CrossRefGoogle Scholar
  20. 20.
    P. Chutia, A. Kumar, Physica B 436, 200 (2014)CrossRefGoogle Scholar
  21. 21.
    H. Cheng, Q.M. Zhang, Appl. Phys. Lett. 82, 3502 (2003)CrossRefGoogle Scholar
  22. 22.
    B. Belaabed, J.L. Wojkiewicz, S. Lamouri, N.E. Kamchi, N. Redon, Polym. Adv. Technol. 23, 1194 (2011)CrossRefGoogle Scholar
  23. 23.
    T. Wang, X.H. Zhang, D. Chen, Y.H. Ma, L. Wang, C.W. Zhao, W.T. Yang, Appl. Surf. Sci. 356, 232 (2015)CrossRefGoogle Scholar
  24. 24.
    X. Zhang, Q.L. He, H.B. Gu, S.Y. Wei, Z.H. Guo, J. Mater. Chem. C 1, 2886 (2013)CrossRefGoogle Scholar
  25. 25.
    J. Stejskal, I. Sapurina, M. Trchova, Prog. Polym. Sci. 35, 1420 (2010)CrossRefGoogle Scholar
  26. 26.
    Z. Rozlivkova, M. Trchova, M. Exnerova, J. Stejskal, Synth. Met. 161, 1122 (2011)CrossRefGoogle Scholar
  27. 27.
    Y.T. Tan, Y.F. Zhang, L.B. Kong, L. Kang, F. Ran, J. Alloy. Part. 722, 1 (2017)CrossRefGoogle Scholar
  28. 28.
    Y.L. Sun, Y.Q. Gu, H. Li, F.X. Geng, Mater. Lett. 185, 208 (2016)CrossRefGoogle Scholar
  29. 29.
    L.J. Yu, X. Li, Q.X. Yang, Y.F. Zhu, Y.Q. Fu, Mater. Lett. 227, 229 (2018)CrossRefGoogle Scholar
  30. 30.
    D.S. Dhawale, R.R. Salunkhe, V.S. Jamadade, D.P. Dubal, S.M. Pawar, C.D. Lokhande, Curr. Appl. Phys. 10, 904 (2010)CrossRefGoogle Scholar
  31. 31.
    K.S. Deepa, S. Kumari Nisha, P. Parameswaran, M.T. Sebastian, J. James, Appl. Phys. Lett. 94, 142902 (2009)CrossRefGoogle Scholar
  32. 32.
    H. Hu, J.M. Saniger, J.G. Bañuelos, Thin Solid Films 347, 241 (1999)CrossRefGoogle Scholar
  33. 33.
    H. Hu, J.L. Cadenas, J.M. Saniger, Polym. Int. 45, 262 (1998)CrossRefGoogle Scholar
  34. 34.
    X. Zhang, Q.L. He, H.B. Gu, S. Wei, Z.H. Guo, J. Mater. Chem. C 1, 2886 (2013)CrossRefGoogle Scholar
  35. 35.
    N. Joseph, J. Varghese, M.T. Sebastian, Compos. B 123, 271 (2017)CrossRefGoogle Scholar
  36. 36.
    S. Saïdi, M. Aymen, M. Bouzitoun, A.B. Mohamed, Sci. Semicond. Process. 26, 336 (2014)CrossRefGoogle Scholar
  37. 37.
    S.H. Liu, S.X. Xue, W.Q. Zhang, J.W. Zhai, Ceram. Int. 40, 15633 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Advanced Processing and Recycling of Non-ferrous MetalsLanzhou University of TechnologyLanzhouChina
  2. 2.Department of Polymer Science and Engineering, School of Chemistry and Biological EngineeringUniversity of Science and Technology BeijingBeijingChina
  3. 3.State Key Laboratory of Power System, Department of Electrical EngineeringTsinghua UniversityBeijingChina

Personalised recommendations