Advertisement

Synthesis of rich fluffy porous carbon spheres by dissolution–reassembly method for supercapacitors

  • Lili Zhang
  • Lei Liu
  • Yifeng Yu
  • Haijun Lv
  • Senlin HouEmail author
  • Aibing ChenEmail author
Article
  • 22 Downloads

Abstract

Carbon spheres with rich porous structure are regarded as ideal materials for practical supercapacitors because of their excellent thermal stabilities, large surface areas, high electrical conductivities and good cycle stabilities. In this work, a novel dissolution–reassembly method is developed for the fabrication of rich porous carbon spheres (PCS) with high capability for supercapacitor. The resorcinol–formaldehyde resin is firstly synthesized then completely dissolved by acetone into oligomer fragments which further reassemble with F127 to form new structured resin spheres. After carbonization, PCS are obtained. The obtained PCS have regular spherical morphology, rich porous structure, high specific surface area and pore volume. As electrode material for supercapacitor, the PCS exhibit excellent performance with capacitance 240 F g−1 at the current density of 1 A g−1 and outstanding cycling life stability (98.1% after 5000 cycles) at the current density of 5 A g−1, showing the great potential for supercapacitor.

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (21676070), Hebei One Hundred-Excellent Innovative Talent Program (III) (SLRC2017034), Hebei Science and Technology Project (17214304D, 16214510D), The Excellent Going Abroad Experts’ Training Program in Hebei Province. Beijing National Laboratory for Molecular Sciences.

References

  1. 1.
    C.M. Parlett, K. Wilson, A.F. Lee, Hierarchical porous materials: catalytic applications. Chem. Soc. Rev. 42, 3876–3893 (2013)CrossRefGoogle Scholar
  2. 2.
    P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008)CrossRefGoogle Scholar
  3. 3.
    L. Dai, D.W. Chang, J.B. Baek, W. Lu, Carbon nanomaterials for advanced energy conversion and storage. Small 8, 1130–1166 (2012)CrossRefGoogle Scholar
  4. 4.
    L.L. Zhang, X.S. Zhao, Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38, 2520–2531 (2009)CrossRefGoogle Scholar
  5. 5.
    J.P. Marcolozar, M. Kunowsky, F. Suárezgarcía, J.D. Carruthers, A. Linaressolano, Activated carbon monoliths for gas storage at room temperature. Energy Environ. Sci. 5, 9833–9842 (2012)CrossRefGoogle Scholar
  6. 6.
    Y. Li, Z.Y. Fu, B.L. Su, Hierarchically structured porous materials for energy conversion and storage. Adv. Funct. Mater. 22, 4634–4667 (2012)CrossRefGoogle Scholar
  7. 7.
    L. Qie, W.M. Chen, H.H. Xu, X.Q. Xiong, Y. Jiang, F. Zou, X.L. Hu, Y. Xin, Z.L. Zhang, Y.H. Huang, Synthesis of functionalized 3D hierarchical porous carbon for high-performance supercapacitors. Energy Environ. Sci. 6, 2497–2504 (2013)CrossRefGoogle Scholar
  8. 8.
    X.J. Wei, S.G. Wan, X.Q. Jiang, Z. Wang, S.Y. Gao, Peanut-shell-like porous carbon from nitrogen-containing poly-N-phenylethanolamine for high-performance supercapacitor. ACS Appl. Mater. Interfaces 7, 22238–22245 (2015)CrossRefGoogle Scholar
  9. 9.
    L. Kong, W. Wei, Q. Zhao, J.Q. Wang, Y. Wan, Active coordinatively unsaturated manganese monoxide-containing mesoporous carbon catalyst in wet peroxide oxidation. ACS Catal. 2, 2577–2586 (2012)CrossRefGoogle Scholar
  10. 10.
    E. Gauthier, T. Hellstern, I.G. Kevrekidis, J. Benziger, Drop detachment and motion on fuel cell electrode materials. ACS Appl. Mater. Interfaces 4, 761–771 (2012)CrossRefGoogle Scholar
  11. 11.
    S. Dutta, A. Bhaumik, C.W. Wu, Hierarchically porous carbon derived from polymers and biomass: effect of interconnected pores on energy applications. Energy Environ. Sci. 7, 3574–3592 (2014)CrossRefGoogle Scholar
  12. 12.
    X. Zheng, W. Lv, Y. Tao, J. Shao, C. Zhang, D. Liu, J. Luo, D.W. Wang, Q.H. Yang, Oriented and interlinked porous carbon nanosheets with an extraordinary capacitive performance. Chem. Mater. 26, 6896–6903 (2014)CrossRefGoogle Scholar
  13. 13.
    G.P. Wang, L. Zhang, J.J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41, 797–828 (2012)CrossRefGoogle Scholar
  14. 14.
    M. Biswal, A. Banerjee, M. Deo, S. Ogale, From dead leaves to high energy density supercapacitors. Energy Environ. Sci. 6, 1249–1259 (2013)CrossRefGoogle Scholar
  15. 15.
    Q. He, Y. Wang, X.X. Liu, D.J. Blackwood, J.S. Chen, One-pot synthesis of self-supported hierarchical urchin-like Ni3S2 with ultrahigh areal pseudocapacitance. J. Mater. Chem. A 6, 22115–22122 (2018)CrossRefGoogle Scholar
  16. 16.
    Z.B. Pan, M.K. Wang, J.W. Chen, B. Shen, J.J. Liu, J.W. Zhai, Largely enhanced energy storage capability of polymer nanocomposite utilizing a core-satellite strategy. Nanoscale 10, 16621–16629 (2018)CrossRefGoogle Scholar
  17. 17.
    H. Jiang, L.P. Yang, C.Z. Li, C.Y. Yan, P.S. Lee, J. Ma, High-rate electrochemical capacitors from highly graphitic carbon-tipped manganese oxide/mesoporous carbon/manganese oxide hybrid nanowires. Energy Environ. Sci. 4, 1813–1819 (2011)CrossRefGoogle Scholar
  18. 18.
    M. Sevilla, A.B. Fuertes, Direct synthesis of highly porous interconnected carbon nanosheets and their application as high-performance supercapacitors. ACS Nano 8, 5069–5078 (2014)CrossRefGoogle Scholar
  19. 19.
    B.B. Chang, W.W. Shi, S.C. Han, Y.N. Zhou, Y.X. Liu, S. Zhang, B.C. Yang, N-rich porous carbons with a high graphitization degree and multiscale pore network for boosting high-rate supercapacitor with ultrafast charging. Chem. Eng. J. 350, 585–598 (2018)CrossRefGoogle Scholar
  20. 20.
    J. Lee, J. Kim, T. Hyeon, Recent progress in the synthesis of porous carbon materials. Adv. Mater. 18, 2073–2094 (2010)CrossRefGoogle Scholar
  21. 21.
    J.C. Wang, S. Kaskel, KOH activation of carbon-based materials for energy storage. J. Mater. Chem. 22, 23710–23725 (2012)CrossRefGoogle Scholar
  22. 22.
    Z. Yue, J. Economy, C.L. Mangun, Preparation of fibrous porous materials by chemical activation 2. H3PO4 activation of polymer coated fibers. Carbon 41, 1809–1817 (2003)CrossRefGoogle Scholar
  23. 23.
    Y.W. Zhu, S. Murali, M.D. Stoller, K.J. Ganesh, W.W. Cai, P.J. Ferreira, A. Pirkle, R.M. Wallace, K.A. Cychosz, M. Thommes, D. Su, E.A. Stach, R.S. Ruoff, Carbon-based supercapacitors produced by activation of graphene. Science 332, 1537–1541 (2011)CrossRefGoogle Scholar
  24. 24.
    Z.J. Zhang, C. Dong, X.Y. Ding, Y.K. Xia, A generalized ZnCl2 activation method to produce nitrogen-containing nanoporous carbon materials for supercapacitor applications. J. Alloys Compd. 636, 275–281 (2015)CrossRefGoogle Scholar
  25. 25.
    X.M. Ma, M.X. Liu, L.H. Gan, Y.H. Zhao, L.W. Chen, Synthesis of micro- and mesoporous carbon spheres for supercapacitor electrode. J. Solid State Electrochem. 17, 2293–2301 (2013)CrossRefGoogle Scholar
  26. 26.
    J. Choma, D. Jamioła, K. Augustynek, M. Marszewski, M. Gao, M. Jaroniec, New opportunities in Stöber synthesis: preparation of microporous and mesoporous carbon spheres. J. Mater. Chem. 22, 12636–12642 (2012)CrossRefGoogle Scholar
  27. 27.
    Z.Q. Wang, L.X. Sun, F. Xu, X.J. Peng, The synthesis of nitrogen-doped mesoporous carbon spheres for hydrogen storage. Mater. Sci. Forum 852, 864–869 (2016)CrossRefGoogle Scholar
  28. 28.
    Y. Fang, D. Gu, Y. Zou, D.Y. Zhao, A low-concentration hydrothermal synthesis of biocompatible ordered mesoporous carbon nanospheres with tunable and uniform size. Angew. Chem. Int. Ed. 49, 7987–7991 (2010)CrossRefGoogle Scholar
  29. 29.
    Y.T. Gong, Z.Z. Wei, J. Wang, P.F. Zhang, H. Li, Y. Wang, Design and fabrication of hierarchically porous carbon with a template-free method. Sci. Rep. 4, 6349 (2013)CrossRefGoogle Scholar
  30. 30.
    J. Liu, S.Z. Qiao, H. Liu, J. Chen, A. Orpe, D. Zhao, G.Q. Lu, Extension of the Stöber method to the preparation of monodisperse resorcinol–formaldehyde resin polymer and carbon spheres. Angew. Chem. Int. Ed. 123, 5894–5894 (2011)CrossRefGoogle Scholar
  31. 31.
    W. Xiong, M.X. Liu, L.H. Gan, Y.K. Lv, Y. Li, L. Yang, Z.J. Xu, Z.X. Hao, H.L. Liu, L.W. Chen, A novel synthesis of mesoporous carbon microspheres for supercapacitor electrodes. J. Power Sources 196, 10461–10464 (2011)CrossRefGoogle Scholar
  32. 32.
    J.P. Han, G.Y. Xu, B. Ding, J. Pan, H. Dou, D.R. MacFarlane, Porous nitrogen-doped hollow carbon spheres derived from polyaniline for high performance supercapacitors. J. Mater. Chem. A 2, 5352–5357 (2014)CrossRefGoogle Scholar
  33. 33.
    G.X. Wang, R.C. Wang, L. Liu, H.L. Zhang, J. Du, Y.T. Zhang, M. Liu, K.H. Liang, A.B. Chen, Synthesis of hollow mesoporous carbon spheres via Friedel-Crafts reaction strategy for supercapacitor. Mater. Lett. 197, 71–74 (2017)CrossRefGoogle Scholar
  34. 34.
    D. Bhattacharjya, M.S. Kim, T.S. Bae, J.S. Yu, High performance supercapacitor prepared from hollow mesoporous carbon capsules with hierarchical nanoarchitecture. J. Power Sources 244, 799–805 (2013)CrossRefGoogle Scholar
  35. 35.
    J. Gamby, P.L. Taberna, P. Simon, J.F. Fauvarque, M. Chesneau, Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors. J. Power Sources 101, 109–116 (2001)CrossRefGoogle Scholar
  36. 36.
    W. Yang, Y.Y. Feng, D. Xiao, H.Y. Yuan, Fabrication of microporous and mesoporous carbon spheres for high-performance supercapacitor electrode materials. Int. J. Energy Res. 39, 805–811 (2015)CrossRefGoogle Scholar
  37. 37.
    A.B. Chen, K.C. Xia, L.S. Zhang, Y.F. Yu, Y.T. Li, H.X. Sun, Y.Y. Wang, Y.Q. Li, S.H. Li, Fabrication of nitrogen-doped hollow mesoporous spherical carbon capsules for supercapacitors. Langmuir 32, 8934–8941 (2016)CrossRefGoogle Scholar
  38. 38.
    B.H. Kim, K.S. Yang, H.G. Woo, Bendable electrodes consisting of porous carbon nanofibers via the electrospinning of polyacrylonitrile containing tetraethoxy orthosilicate for supercapacitor. Electrochem. Commun. 13, 1042–1046 (2011)CrossRefGoogle Scholar
  39. 39.
    M.M. Yang, B. Cheng, H.H. Song, X.H. Chen, Preparation and electrochemical performance of polyaniline-based carbon nanotubes as electrode material for supercapacitor. Electrochim. Acta 55, 7021–7027 (2010)CrossRefGoogle Scholar
  40. 40.
    Q. Zhang, L. Li, Y.L. Wang, Y.J. Chen, F. He, S.L. Gai, P.P. Yang, Uniform fibrous-structured hollow mesoporous carbon spheres for high-performance supercapacitor electrodes. Electrochim. Acta 176, 542–547 (2015)CrossRefGoogle Scholar
  41. 41.
    P. Wen, Z. Li, P. Gong, J. Sun, J. Wang, S. Yang, Design and fabrication of carbonized rGO/CMOF-5 hybrid for supercapacitor applications. RSC Adv. 6, 13264–13271 (2016)CrossRefGoogle Scholar
  42. 42.
    G.X. Wang, X.L. Hu, L. Liu, Y.F. Yu, H.J. Lv, A.B. Chen, Nitrogen-doping hierarchically porous carbon nanosheets for supercapacitor. J. Mater. Sci.: Mater. Electron. 29, 5363–5372 (2018)Google Scholar
  43. 43.
    Y.Y. Wang, Y.F. Yu, G. Li, L. Liu, H.L. Zhang, G.X. Wang, A.B. Chen, Sea urchin-like core/shell hierarchical porous carbon for supercapacitors. J. Alloys Compd. 719, 438–445 (2017)CrossRefGoogle Scholar
  44. 44.
    N.S. Zhang, N. Gao, C.P. Fu, D. Liu, S.C. Li, L.L. Jiang, H.H. Zhou, Y.F. Kuang, Hierarchical porous carbon spheres/graphene composite for supercapacitor with both aqueous solution and ionic liquid. Electrochim. Acta 235, 340–347 (2017)CrossRefGoogle Scholar
  45. 45.
    J. Du, L. Liu, Z.P. Hu, Y.F. Yu, Y. Zhang, S.L. Hou, A.B. Chen, Raw-cotton-derived N-doped carbon fiber aerogel as an efficient electrode for electrochemical capacitors. ACS Sustain. Chem. Eng. 6, 4008–4015 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Chemistry and Pharmaceutical EngineeringHebei University of Science and TechnologyShijiazhuangPeople’s Republic of China

Personalised recommendations