Electrochemical performance and optimization of α-NiMoO4 by different facile synthetic approach for supercapacitor application

  • A. Shameem
  • P. Devendran
  • V. Siva
  • R. Packiaraj
  • N. Nallamuthu
  • S. Asath BahadurEmail author


Nickel molybdate (NiMoO4) nanoparticles (NPs) are prepared by different synthetic techniques via hydrothermal (SHC), gel-combustion (SGC) and microwave-assisted combustion (SMC) methods. All prepared samples are subjected to calcination at 600 °C to get a pure α-NiMoO4 with a monoclinic crystal structure and their physico-chemical properties are compared. The average crystallite size of SMC is smaller than that of other two methods. Depending on the synthetic process, NiMoO4 NPs exhibits different morphology. Optical band gap energies for all samples are calculated. The cyclic voltammograms signify the occurrence of redox couples and besides with the electrochemical impedance spectra (Nyquist plot) confirm the supercapacitive nature. Among all, the modified SMC electrode material deliver highest specific capacitance value related with scan rate and current density. Nevertheless, SMC exhibits lowest faradic resistance and also grants well permanency with a stable profile of 98.6% retentivity after 1000 cycles results in high electric activity.



The author A.S and R.P are grateful to Kalasalingam Academy of Research and Education, Krishnankoil-626 126, India for providing financial support as the University Research Fellowship. Also, financial assistance from Council of Scientific and Industrial Research, India through the Minor Research Project (No. 03 (1276)/13/EMR-II) is gratefully acknowledged by V.S and S.A.

Supplementary material

10854_2018_603_MOESM1_ESM.docx (978 kb)
Supplementary material 1 (DOCX 978 KB)


  1. 1.
    X. Han, K. Tao, Q. Ma, L. Han, J. Mater. Sci. Mater. Electron. 29(17), 14697 (2018)CrossRefGoogle Scholar
  2. 2.
    K. Karthik, S. Dhanuskodi, C. Gobinath, S. Prabukumar, S. Sivaramakrishnan, J. Mater. Sci. Mater. Electron. 29(7), 5459 (2018)CrossRefGoogle Scholar
  3. 3.
    M. Rashad, A.M. Ali, M.I. Sayyed, I.V. Kityk, J. Mater. Sci. Mater. Electron. 29(12), 10123 (2018)CrossRefGoogle Scholar
  4. 4.
    A.C. Fernandez, P. Sakthivel, J. Jesudurai, J. Mater. Sci. Mater. Electron. 29(1), 357 (2018)CrossRefGoogle Scholar
  5. 5.
    T. Wang, R. Jin, X. Wu, J. Zheng, X. Li, K. Ostrikov, J. Mater. Chem. A 6, 9228 (2018)CrossRefGoogle Scholar
  6. 6.
    P. Sprenger, W. Kleist, J. Grunwaldt, ACS Catal. 7, 5628 (2017)CrossRefGoogle Scholar
  7. 7.
    J. Xia, L.X. Song, W. Liu, Y. Teng, Q.S. Wang, L. Zhao, M.M. Ruan, RSC Adv. 5, 12015 (2015)CrossRefGoogle Scholar
  8. 8.
    K. Seevakan, A. Manikandan, P. Devendran, A. Shameem, T. Alagesan, Ceram. Int. 44, 13879 (2018)CrossRefGoogle Scholar
  9. 9.
    H. Xuan, Y. Xu, Y. Zhang, H. Li, P. Han, Y. Du, J. Alloys Compd. 745, 135 (2018)CrossRefGoogle Scholar
  10. 10.
    P. Liu, Y. Deng, Q. Zhang, Z. Hu, Z. Xu, Y. Liu, M. Yao, Z. Ai, Ionics 21, 2797 (2015)CrossRefGoogle Scholar
  11. 11.
    B. Senthilkumar, K. Vijaya Sankar, R. Kalai Selvan, M. Danielle, M. Manickam, RSC Adv. 3, 352 (2013)CrossRefGoogle Scholar
  12. 12.
    O.A. Knyazheva, O.N. Baklanova, A.V. Lavrenov, E.A. Buluchevskii, V.A. Drozdov, M.V. Trenikhin, N.N. Leont’eva, A.V. Vasilevich, V.A. Likholobov, Kinet. Catal. 55, 130 (2014)CrossRefGoogle Scholar
  13. 13.
    J. Haetge, I. Djerdj, T. Brezesinski, Chem. Commun. 48, 6726 (2012)CrossRefGoogle Scholar
  14. 14.
    K. Sakthikumar, S. Ede, S. Mishra, S. Kundu, Dalton Trans. 45, 8897 (2016)CrossRefGoogle Scholar
  15. 15.
    G. Kianpour, F. Soofivand, M. Badiei, M. Salavati-Niasari, M. Hamadanian, J. Mater. Sci. Mater. Electron. 27, 10244 (2016)CrossRefGoogle Scholar
  16. 16.
    R. Sundaram, K.S. Nagaraja, Sens. Actuators B 101, 353 (2004)CrossRefGoogle Scholar
  17. 17.
    J.A. Rodriguez, S. Chaturvedi, J.C. Hanson, J.L. Brito, J. Phys. Chem. B 103, 770 (1999)CrossRefGoogle Scholar
  18. 18.
    K. Seevakan, A. Manikandan, P. Devendran, A. Baykal, T. Alagesan, Ceram. Int. 44, 17735 (2018)CrossRefGoogle Scholar
  19. 19.
    K. Seevakan, A. Manikandan, P. Devendran, Y. Slimani, A. Baykal, T. Alagesan, Ceram. Int. 44, 20075 (2018)CrossRefGoogle Scholar
  20. 20.
    A. Kaddouri, R. Anouchinsky, C. Mazzocchia, L.M. Madeira, M.F. Portela, Catal. Today 40, 201 (1998)CrossRefGoogle Scholar
  21. 21.
    R.A. Madeley, S.E. Wanke, Appl. Catal. 39, 295 (1988)CrossRefGoogle Scholar
  22. 22.
    J.H. Ryu, S.M. Koo, J.W. Yoon, C.S. Lim, K.B. Shim, Mater. Lett. 60, 1702 (2006)CrossRefGoogle Scholar
  23. 23.
    A.W. Sleight, B.L. Chamberland, Inorg. Chem. 7, 1672 (1968)CrossRefGoogle Scholar
  24. 24.
    A. Shameem, P. Devendran, V. Siva, K.S. Venkatesh, A. Manikandan, S. Asath Bahadur, N. Nallamuthu, J. Inorg. Organomet. Polym. 28, 671 (2018)CrossRefGoogle Scholar
  25. 25.
    K. Saberyan, F. Soofivand, G. Kianpour, M. Salavati-Niasari, S. Bagheri, J. Mater. Sci. Mater. Electron. 27, 3765 (2016)CrossRefGoogle Scholar
  26. 26.
    V. Hangloo, S. Pandita, K.K. Bamzai, P.N. Kotru, N. Sahni, Cryst. Growth Des. 3, 753 (2003)CrossRefGoogle Scholar
  27. 27.
    N. Nallamuthu, I. Prakash, N. Satyanarayana, M. Venkateswarlu, Mater. Res. Bull. 46, 32 (2011)CrossRefGoogle Scholar
  28. 28.
    P. Devendran, T. Alagesan, K. Pandian, Adv. Mater. Res. 938, 215 (2014)CrossRefGoogle Scholar
  29. 29.
    R. Packiaraj, P. Devendran, S. Asath Bahadur, N. Nallamuthu, J. Mater. Sci. Mater. Electron. 29, 13265 (2018)CrossRefGoogle Scholar
  30. 30.
    J.C. Jansen, A. Arafat, A.K. Barakat, H. Van Bekkum, in Synthesis of Microporous Materials, vol. 1, ed. by M.L. Occelli, H. Robson (Van Nostrand Reinhold, New York, 1992), pp. 507–521Google Scholar
  31. 31.
    M. Masteri-Farahani, S. Mahdavi, M. Rafizadeh, Ceram. Int. 39, 4619 (2013)CrossRefGoogle Scholar
  32. 32.
    J. Lian, Z. Ding, F. Kwong, H.L. Dickon, Ng, CrystEngCom. 13, 4820 (2011)CrossRefGoogle Scholar
  33. 33.
    S.-M. Lee, S.-N. Cho, J. Cheon, Adv. Mater. 15(5), 441 (2003)CrossRefGoogle Scholar
  34. 34.
    P. Sivakumar, P. Sivakumar, K. Anbarasu, K. Pandian, S. Renganathan, Ind. Eng. Chem. Res. 52, 17676 (2013)CrossRefGoogle Scholar
  35. 35.
    L. Yang, J. Wang, Y. Wan, Y. Li, H. Xie, H. Cheng, H. Jin, Seo, J. Alloys Compd. 664, 756 (2016)CrossRefGoogle Scholar
  36. 36.
    P.K. Pandey, N.S. Bhave, R.B. Kharat, Mater. Res. Bull. 41, 1160 (2006)CrossRefGoogle Scholar
  37. 37.
    L.S. Cavalcante, J.S. Sczancoski, L.F. Lima Jr., J.W.M. Espionsa, P.S. Pizani, J.A. Varela, E. Longo, Cryst. Growth Des. 9, 1002 (2009)CrossRefGoogle Scholar
  38. 38.
    S.K. Meher, G. Ranga Rao, J. Phys. Chem. C 115, 15646 (2011)CrossRefGoogle Scholar
  39. 39.
    B. Saravanakumar, S.P. Ramachandran, G. Ravi, V. Ganesh, A. Sakunthala, R. Yuvakkumar, Mater. Lett. 209, 1 (2017)CrossRefGoogle Scholar
  40. 40.
    Y. Huang, F. Cui, Y. Zhao, J. Lian, J. Bao, H. Li, J. Alloys Compd. 753, 176 (2018)CrossRefGoogle Scholar
  41. 41.
    P. Raja Jothi, K. Shanthi, R.R. Salunkhe, M. Pramanik, V. Malgras, S.M. Alshehri, Y. Yamauchi, Eur. J. Inorg. Chem. (2015). Google Scholar
  42. 42.
    Q. Wang, X. Wang, B. Liu, G. Yu, X. Hou, D. Chen, G. Shen, J. Mater. Chem. A 1, 2468 (2013)CrossRefGoogle Scholar
  43. 43.
    H. Wan, J. Jiang, X. Ji, L. Miao, L. Zhang, K. Xu, H. Chen, Y. Ruan, Mater. Lett. 108, 164 (2013)CrossRefGoogle Scholar
  44. 44.
    L.Q. Mai, F. Yang, Y.L. Zhao, X. Xu, L. Xu, Y.Z. Luo, Nat. Commun. 2, 381 (2011)CrossRefGoogle Scholar
  45. 45.
    I. Kotutha, E. Swatsitang, W. Meewassana et al., Jpn. J. Appl. Phys. 54, 06FH10–06FH11 (2015)CrossRefGoogle Scholar
  46. 46.
    C. Yuan, J. Li, L. Hou, X. Zhang, L. Shen, X. Wen Lou, Adv. Funct. Mater. 22, 4592 (2012)CrossRefGoogle Scholar
  47. 47.
    Y.Q. Wu, X.Y. Chen, P.T. Ji, Q.Q. Zhou, Electrochim. Acta 56, 7517 (2011)CrossRefGoogle Scholar
  48. 48.
    T.H. Lee, K. Do, Y.W. Lee, S.S. Jeon, C. Kim, J. Ko, S.S. Im, J. Mater. Chem. 22, 21624 (2012)CrossRefGoogle Scholar
  49. 49.
    T. Zhai, L. Wan, S. Sun, Q. Chen, J. Sun, Q. Xia, H. Xia, Adv. Mater. 29(7), 1604167 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physics, International Research Centre (IRC)Kalasalingam Academy of Research and EducationKrishnankoilIndia

Personalised recommendations