Advertisement

Design and fabrication of double AlGaN/GaN distributed Bragg reflector stack mirror for the application of GaN-based optoelectronic devices

  • Gaoqiang Deng
  • Yuantao ZhangEmail author
  • Pengchong Li
  • Ye Yu
  • Xu Han
  • Liang Chen
  • Long Yan
  • Xin Dong
  • Degang Zhao
  • Guotong Du
Article
  • 26 Downloads

Abstract

In this work, a near-ultraviolet (380 nm) double Al0.2Ga0.8N/GaN distributed Bragg reflectors (DBRs) stack mirror was designed and fabricated. The double DBRs stack mirror consists of a 30-pair Al0.2Ga0.8N/GaN DBRs centered at 375 nm and a 20-pair Al0.2Ga0.8N/GaN DBRs centered at 385 nm. Our simulation results show that the method of double DBRs stack mirror design can broaden the stopband width greatly and increase the reflected angle efficiently, compared with the single Al0.2Ga0.8N/GaN DBRs mirror. In experiment, the double Al0.2Ga0.8N/GaN DBRs stack mirror and the reference Al0.2Ga0.8N/GaN DBRs mirror were grown on sapphire substrate by metalorganic chemical vapor deposition. The measured stopband width of the double DBRs stack mirror (~ 25 nm) is more than two times that of the reference DBRs mirror (~ 11 nm), which consists well with our simulation results. It is reasonable to believe that this work could provide a valuable information to obtain AlGaN/GaN DBRs with wide stopband width that can be used in the fabrication of GaN-based resonant cavity light-emitting diodes and vertical cavity surface emitting lasers.

Notes

Acknowledgements

This work was supported by the National Key Research and Development Program (Grant No. 2016YFB0401801), the National Natural Science Foundation of China (Grant Nos. 61674068 and 61734001), the Science and Technology Developing Project of Jilin Province (Grant Nos. 20150519004JH, 20160101309JC, and 20170204045GX).

References

  1. 1.
    S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, H. Kiyoku, Appl. Phys. Lett. 69, 4056 (1996).  https://doi.org/10.1063/1.117816 CrossRefGoogle Scholar
  2. 2.
    D.B. Li, M. Senoh, K. Jiang, X.J. Sun, C.L. Guo, Adv. Opt. Photon. 10, 43 (2018).  https://doi.org/10.1364/AOP.10.000043 CrossRefGoogle Scholar
  3. 3.
    H.P. Liu, X.Q. Wang, Z.Y. Chen, X.T. Zheng, P. Wang, B.W. Shen, T. Wang, X. Rong, J. Zhang, X.L. Yang, F.J. Xu, W.K. Ge, B. Shen, Appl. Phys. Lett. 112, 162102 (2018).  https://doi.org/10.1063/1.5017153 CrossRefGoogle Scholar
  4. 4.
    J.Y. Zheng, L. Wang, X.Z. Wu, Z.B. Hao, C.Z. Sun, B. Xiong, Y. Luo, Y.J. Han, J. Wang, H.T. Li, M. Li, J.B. Kang, Q. Li, IEEE Photon. Technol. Lett. 29, 2187 (2017).  https://doi.org/10.1109/LPT.2017.2766454 CrossRefGoogle Scholar
  5. 5.
    P. Ruterana, M. Albrecht, J. Neugebauer, Nitride Semiconductors, 1st edn. (Wiley, Weinheim, 2003), p. 4CrossRefGoogle Scholar
  6. 6.
    F. Natali, D. Byrne, A. Dussaigne, N. Grandjean, J. Massies, B. Damilano, Appl. Phys. Lett. 82, 499 (2003).  https://doi.org/10.1063/1.1539297 CrossRefGoogle Scholar
  7. 7.
    M. Yonemaru, A. Kikuchi, K. Kishino, Phys. Status Solidi A 192, 292 (2002).  https://doi.org/10.1002/1521-396X(200208)192:2%3C292::AID-PSSA292%3E3.0.CO;2-E CrossRefGoogle Scholar
  8. 8.
    T. Someya, R. Werner, A. Forchel, M. Catalano, R. Cingolani, Y. Arakawa, Science 285, 1905 (1999).  https://doi.org/10.1126/science.285.5435.1905 CrossRefGoogle Scholar
  9. 9.
    Y.S. Zhao, D.L. Hibbard, H.P. Lee, K. Ma, W. So, H. Liu, J. Electron. Mater. 32, 1523 (2003).  https://doi.org/10.1007/s11664-003-0124-0 CrossRefGoogle Scholar
  10. 10.
    H.H. Yao, C.F. Lin, H.C. Kuo, S.C. Wang, J. Cryst. Growth 262, 151 (2004).  https://doi.org/10.1016/j.jcrysgro.2003.10.062 CrossRefGoogle Scholar
  11. 11.
    N. Nakada, M. Nakaji, H. Ishikawa, T. Egawa, M. Umeno, T. Jimbo, Appl. Phys. Lett. 76, 1804 (2000).  https://doi.org/10.1063/1.126171 CrossRefGoogle Scholar
  12. 12.
    H.M. Ng, T.D. Moustakas, S.N.G. Chu, Appl. Phys. Lett. 76, 2818 (2000).  https://doi.org/10.1063/1.126483 CrossRefGoogle Scholar
  13. 13.
    T. Ive, O. Brandt, K.H. Ploog, J. Cryst. Growth 278, 355 (2005).  https://doi.org/10.1016/j.jcrysgro.2004.12.048 CrossRefGoogle Scholar
  14. 14.
    J.F. Carlin, C. Zellweger, J. Dorsaz, S. Nicolay, G. Christmann, E. Feltin, R. Butté, N. Grandjean, Phys. Status Solidi B 242, 2326 (2005).  https://doi.org/10.1002/pssb.200560968 CrossRefGoogle Scholar
  15. 15.
    P.C. Li, X. Han, L. Yan, G.Q. Deng, M.Z. Liu, Y.T. Zhang, B.L. Zhang, Mater. Sci. Semcon. Proc. 80, 162 (2018).  https://doi.org/10.1016/j.mssp.2018.02.010 CrossRefGoogle Scholar
  16. 16.
    H.A. Macleod, Thin Film Optical Filters, 4th edn. (McGraw-Hill, Arizona, 2010), p. 222CrossRefGoogle Scholar
  17. 17.
    H.A. Macleod, Thin Film Optical Filters, 4th edn. (McGraw-Hill, Arizona, 2010), p. 44CrossRefGoogle Scholar
  18. 18.
    T. Detchprohm, Y.S. Liu, K. Mehta, S. Wang, H.G. Xie, T.T. Kao, S.C. Shen, P.D. Yoder, F.A. Ponce, R.D. Dupuis, Appl. Phys. Lett. 110, 011105 (2017).  https://doi.org/10.1063/1.4973581 CrossRefGoogle Scholar
  19. 19.
    Z. Huang, Y.T. Zhang, B.J. Zhao, F. Yang, J.Y. Jiang, G.Q. Deng, B.Z. Li, H.W. Liang, Y.C. Chang, J.F. Song, J. Mater. Sci.: Mater. Electron. 27, 1738 (2016).  https://doi.org/10.1007/s10854-015-3948-5 Google Scholar
  20. 20.
    K.E. Waldrip, J. Han, J.J. Figiel, H. Zhou, E. Makarona, A.V. Nurmikko, Appl. Phys. Lett. 78, 3205 (2001).  https://doi.org/10.1063/1.1371240 CrossRefGoogle Scholar
  21. 21.
    S. Fernández, F.B. Naranjo, F. Calle, M.A. Sánchez-García, E. Calleja, P. Vennegues, A. Trampert, K.H. Ploog, Appl. Phys. Lett. 79, 2136 (2001).  https://doi.org/10.1063/1.1401090 CrossRefGoogle Scholar
  22. 22.
    S. Fernández, F.B. Naranjo, F. Calle, M.A. Sánchez-García, E. Calleja, P. Vennegues, A. Trampert, K.H. Ploog, Semicond. Sci. Technol. 16, 913 (2001)CrossRefGoogle Scholar
  23. 23.
    M.A. Moram, M.E. Vickers, Rep. Prog. Phys. 72, 036502 (2009)CrossRefGoogle Scholar
  24. 24.
    G.S. Huang, T.C. Lu, H.H. Yao, H.C. Kuo, S.C. Wang, C.W. Lin, L. Chang, Appl. Phys. Lett. 88, 061904 (2006).  https://doi.org/10.1063/1.2172007 CrossRefGoogle Scholar
  25. 25.
    P.C. Tao, H.W. Liang, D.S. Wang, X.C. Xia, Q.J. Feng, Y. Liu, R.S. Shen, K.X. Zhang, Y.M. Luo, W.P. Guo, Q.X. Deng, G.T. Du, Mater. Sci. Semcon. Proc. 27, 841 (2014).  https://doi.org/10.1016/j.mssp.2014.08.003 CrossRefGoogle Scholar
  26. 26.
    D.S. Wang, H.W. Liang, P.C. Tao, K.X. Zhang, S.W. Song, Y. Liu, X.C. Xia, R.S. Shen, G.T. Du, Superlattices Microstruct. 70, 54 (2014).  https://doi.org/10.1016/j.spmi.2014.03.005 CrossRefGoogle Scholar
  27. 27.
    P.C. Tao, H.W. Liang, X.C. Xia, Y. Liu, J.H. Jiang, H.S. Huang, Q.J. Feng, R.S. Shen, Y.M. Luo, G.T. Du, Superlattices Microstruct. 85, 482 (2015).  https://doi.org/10.1016/j.spmi.2015.05.035 CrossRefGoogle Scholar
  28. 28.
    Y.S. Liu, S. Wang, H. Xie, T.T. Kao, K. Mehta, X.J. Jia, S.C. Shen, P.D. Yoder, F.A. Ponce, T. Detchprohm, R.D. Dupuis, Appl. Phys. Lett. 108, 081103 (2016).  https://doi.org/10.1063/1.4961634 CrossRefGoogle Scholar
  29. 29.
    T. Moudakir, S. Gautier, S. Suresh, M. Abid, Y.E. Gmili, G. Patriarche, K. Pantzas, D. Troadec, J. Jacquet, F. Genty, P. Voss, A. Ougazzaden, J. Cryst. Growth 370, 12 (2013).  https://doi.org/10.1016/j.jcrysgro.2012.09.061 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and EngineeringJilin UniversityChangchunChina
  2. 2.State Key Laboratory of Integrated Optoelectronics, Institute of SemiconductorsChinese Academy of ScienceBeijingChina

Personalised recommendations