Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 22, pp 19336–19343 | Cite as

Microspheric flower-like Co4S3@Co foam synthesized by in situ sulfidization for electrocatalytic hydrogen evolution reaction

  • Li Zhang
  • Qingman Liang
  • Yang Huang
  • Hua Li
  • Minjie Zhou
  • Binhong He
  • Younian Liu
  • Haihua Yang
  • Jianhui Yan
Article
  • 75 Downloads

Abstract

Non-noble metal sulfide electrocatalysts have received increasing attentions for hydrogen evolution reaction (HER). In this work, a facile one-step in situ sulfidization strategy was developed for the first time to construct microspheric flower-like Co4S3@Co foam with excellent HER activity. In comparison with the bare Co foam, the in situ growth of microspheric flower-like Co4S3 on Co foam substrate substantially improves the HER performance, leading to a lower overpotential of 143 mV at a current density of 10 mA cm−2, a smaller Tafel slope of 158 mV dec−1, as well as good stability in alkaline medium. The enhanced HER performance could be mainly attributed to the synergistic effects of the well-dispersed catalytic microspheric flower-like Co4S3 and the three-dimensional (3D) porous Co foam substrate. The microspheric flower-like Co4S3 is beneficial for increasing the active surface area to expose more active sites, and the intimate contact between Co4S3 and Co foam facilitates the electron transport, thus enhancing the catalytic activity.

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 51372080), the Natural Science Foundation of Hunan Provincial of China (Grant No. 2017JJ2108), and the Scientific Research Foundation of Hunan Provincial Education Department of China (Grant No. 15A076).

Supplementary material

10854_2018_60_MOESM1_ESM.docx (173 kb)
Supplementary material 1 (DOCX 172 KB)

References

  1. 1.
    J. Greeley, T.F. Jaramillo, J. Bonde, I. Chorkendorff, J.K. Nørskov, Nat. Mater. 5, 909 (2006)CrossRefGoogle Scholar
  2. 2.
    X. Zou, Y. Zhang, Chem. Soc. Rev. 44, 5148 (2015)CrossRefGoogle Scholar
  3. 3.
    P.C. Vesborg, T.F. Jaramillo, RSC Adv. 2, 7933 (2012)CrossRefGoogle Scholar
  4. 4.
    C. González-Buch, I. Herraiz-Cardona, E. Ortega, J. García-Antón, V. Pérez-Herranz, Int. J. Hydrog. Energy 38, 10157 (2013)CrossRefGoogle Scholar
  5. 5.
    T.Y. Ma, S. Dai, M. Jaroniec, S.Z. Qiao, Angew. Chem. Int. Ed. 53, 7281 (2014)CrossRefGoogle Scholar
  6. 6.
    J.M. McEnaney, T.L. Soucy, J.M. Hodges, J.F. Callejas, J.S. Mondschein, R.E. Schaak, J. Mater. Chem. A 4, 3077 (2016)CrossRefGoogle Scholar
  7. 7.
    W.-F. Chen, J.T. Muckerman, E. Fujita, Chem. Commun. 49, 8896 (2013)CrossRefGoogle Scholar
  8. 8.
    Y. Shi, J. Wang, C. Wang, T.-T. Zhai, W.-J. Bao, J.-J. Xu, X.-H. Xia, H.-Y. Chen, J. Am. Chem. Soc. 137, 7365 (2015)CrossRefGoogle Scholar
  9. 9.
    C. Sun, J. Zhang, J. Ma, P. Liu, D. Gao, K. Tao, D. Xue, J. Mater. Chem. A 4, 11234 (2016)CrossRefGoogle Scholar
  10. 10.
    S. Wan, Y. Liu, G.-D. Li, X. Li, D. Wang, X. Zou, Catal. Sci. Technol. 6, 4545 (2016)CrossRefGoogle Scholar
  11. 11.
    L. Wang, X. Wu, S. Guo, M. Han, Y. Zhou, Y. Sun, H. Huang, Y. Liu, Z. Kang, J. Mater. Chem. A 5, 2717 (2017)CrossRefGoogle Scholar
  12. 12.
    Z.H. Deng, L. Li, W. Ding, K. Xiong, Z.D. Wei, Chem. Commun. 51, 1893 (2015)CrossRefGoogle Scholar
  13. 13.
    H. Vrubel, X. Hu, Angew. Chem. 124, 12875 (2012)CrossRefGoogle Scholar
  14. 14.
    D. Zhou, L. He, W. Zhu, X. Hou, K. Wang, G. Du, C. Zheng, X. Sun, A.M. Asiri, J. Mater. Chem. A 4, 10114 (2016)CrossRefGoogle Scholar
  15. 15.
    J.K. Kim, S.-K. Park, Y.C. Kang, J. Alloys Compd. 763, 652 (2018)CrossRefGoogle Scholar
  16. 16.
    J. Zhou, Y. Liu, Z. Zhang, J. Li, X. Qi, J. Mater. Sci. Mater. Electron. 29, 12300 (2018)CrossRefGoogle Scholar
  17. 17.
    Y. Qian, M. Yang, F. Zhang, J. Du, K. Li, X. Lin, X. Zhu, Y. Lu, W. Wang, D.J. Kang, Mater. Charact. 142, 43 (2018)CrossRefGoogle Scholar
  18. 18.
    H. Mao, Y. Qian, Z. Jin, Y. Zhang, Mater. Lett. 228, 258 (2018)CrossRefGoogle Scholar
  19. 19.
    J.K. Wang, H.K. Wang, D.X. Cao, X. Lu, X.G. Han, C.M. Niu, Part. Part. Syst. Char. 34, 1700185 (2017)CrossRefGoogle Scholar
  20. 20.
    H. Lin, H. Li, Y. Li, J. Liu, X. Wang, L. Wang, J. Mater. Chem. A 5, 25410 (2017)CrossRefGoogle Scholar
  21. 21.
    J. Yang, D. Voiry, S.J. Ahn, D. Kang, A.Y. Kim, M. Chhowalla, H.S. Shin, Angew. Chem. Int. Ed. 52, 13751 (2013)CrossRefGoogle Scholar
  22. 22.
    D.N. Sangeetha, M. Selvakumar, Appl. Surf. Sci. 453, 132 (2018)CrossRefGoogle Scholar
  23. 23.
    H. Zhai, X. Liu, P. Wang, B. Huang, Q. Zhang, Appl. Surf. Sci. 430, 515 (2018)CrossRefGoogle Scholar
  24. 24.
    X. Zhang, P. Ding, Y. Sun, X. Li, H. Li, J. Guo, J. Alloys Compd. 731, 403 (2018)CrossRefGoogle Scholar
  25. 25.
    Q. Liu, J. Shi, J. Hu, A.M. Asiri, Y. Luo, X. Sun, ACS Appl. Mater. Inter. 7, 3877 (2015)CrossRefGoogle Scholar
  26. 26.
    D. Kong, H. Wang, Z. Lu, Y. Cui, J. Am. Chem. Soc. 136, 4897 (2014)CrossRefGoogle Scholar
  27. 27.
    T. Wang, L. Wu, X. Xu, Y. Sun, Y. Wang, W. Zhong, Y. Du, Sci. Rep. 7, 11891 (2017)CrossRefGoogle Scholar
  28. 28.
    Q. Liu, J. Tian, W. Cui, P. Jiang, N. Cheng, A.M. Asiri, X. Sun, Angew. Chem. 126, 6828 (2014)CrossRefGoogle Scholar
  29. 29.
    G. Liu, B. Wang, L. Wang, T. Liu, T. Gao, D. Wang, RSC Adv. 6, 54076 (2016)CrossRefGoogle Scholar
  30. 30.
    G.B. Yuan, Y. Le, W. Xiao, S. Shuyan, L.X. Wen, Adv. Mater. 29, 1605051 (2017)CrossRefGoogle Scholar
  31. 31.
    H. Heydari, M.B. Gholivand, J. Mater. Sci. Mater. Electron. 28, 3607 (2017)CrossRefGoogle Scholar
  32. 32.
    M. Wang, A.M. Anghel, B. Marsan, N.-L. Cevey Ha, N. Pootrakulchote, S.M. Zakeeruddin, M. Grätzel, J. Am. Chem. Soc. 131, 15976 (2009)CrossRefGoogle Scholar
  33. 33.
    X. Fang, T. Song, R. Liu, B. Sun, J. Phys. Chem. C 118, 20238 (2014)CrossRefGoogle Scholar
  34. 34.
    L. Zhu, K.-Y. Cho, W.-C. Oh, J. Mater. Sci. Mater. Electron. 28, 1393 (2017)CrossRefGoogle Scholar
  35. 35.
    Y. Sun, L. Yang, M. Wei, G. Chen, G. Che, J. Yang, Z. Wang, Z. Gao, J. Mater. Sci. Mater. Electron. 27, 1457 (2016)CrossRefGoogle Scholar
  36. 36.
    W. Xia, L. Changkun, L. Qiang, L. Hongsen, X. Jie, C. Xianming, Z. Lijuan, Z. Guoxia, L. Hongliang, G. Peizhi, L. Shandong, Z.X. Song, ChemElectroChem 5, 309 (2018)CrossRefGoogle Scholar
  37. 37.
    T. Chen, Z. Zhang, B. Cheng, R. Chen, Y. Hu, L. Ma, G. Zhu, J. Liu, Z. Jin, J. Am. Chem. Soc. 139, 12710 (2017)CrossRefGoogle Scholar
  38. 38.
    G. Zhan, Z. Lin, B. Xu, B. Yang, X. Chen, X. Wang, C. Yang, J. Liu, J. Mater. Sci. Mater. Electron. 28, 13710 (2017)CrossRefGoogle Scholar
  39. 39.
    Y. Zhou, M. Luo, Z. Zhang, W. Li, X. Shen, W. Xia, M. Zhou, X. Zeng, Appl. Surf. Sci. 448, 9 (2018)CrossRefGoogle Scholar
  40. 40.
    Z. Min, D. Yong, Y. Li, D. Xiaoqiang, Z. Yukun, Adv. Funct. Mater. 27, 1605846 (2017)CrossRefGoogle Scholar
  41. 41.
    Z. Han, Z. Junfeng, Y. Ruoping, D. Mingliang, W. Qingfa, G. Guohua, W. Jiandong, W. Guangming, Z. Ming, L. Bo, Y. Juming, Z. Xiangwen, Adv. Mater. 27, 4752 (2015)CrossRefGoogle Scholar
  42. 42.
    X.-X. Ma, X.-Q. He, Electrochim. Acta 213, 163 (2016)CrossRefGoogle Scholar
  43. 43.
    S.M. Pourmortazavi, M. Rahimi-Nasrabadi, B. Larijani, M.S. Karimi, S. Mirsadeghi, J. Mater. Sci. Mater. Electron. 29, 13833 (2018)CrossRefGoogle Scholar
  44. 44.
    G. Du, W. Li, Y. Liu, J. Phys. Chem. C 112, 1890 (2008)CrossRefGoogle Scholar
  45. 45.
    J.M. Yan, H.Z. Huang, J. Zhang, Z.J. Liu, Y. Yang, J. Power Sources 146, 264 (2005)CrossRefGoogle Scholar
  46. 46.
    W.S. Chi, J.W. Han, S. Yang, D.K. Roh, H. Lee, J.H. Kim, Chem. Commun. 48, 9501 (2012)CrossRefGoogle Scholar
  47. 47.
    B. He, M. Zhou, Z. Hou, G. Li, Y. Kuang, J. Mater. Res. 33, 519 (2017)CrossRefGoogle Scholar
  48. 48.
    Y.H. Zhang, X. Cheng, Q. Wang, Adv. Mater. Res. 148–149, 1404 (2011)CrossRefGoogle Scholar
  49. 49.
    H. Wan, X. Ji, J. Jiang, J. Yu, L. Miao, L. Zhang, S. Bie, H. Chen, Y. Ruan, J. Power Sources 243, 396 (2013)CrossRefGoogle Scholar
  50. 50.
    F. Huang, R. Meng, Y. Sui, F. Wei, J. Qi, Q. Meng, Y. He, J. Alloys Compd. 742, 844 (2018)CrossRefGoogle Scholar
  51. 51.
    Y. Qian, J. Du, D.J. Kang, Microporous Mesoporous Mater. 273, 148 (2019)CrossRefGoogle Scholar
  52. 52.
    P. Ganesan, A. Sivanantham, S. Shanmugam, J. Mater. Chem. A 4, 16394 (2016)CrossRefGoogle Scholar
  53. 53.
    L. Ye, L. Zhao, H. Zhang, P. Zan, S. Gen, W. Shi, B. Han, H. Sun, X. Yang, T. Xu, J. Mater. Chem. A 5, 1603 (2017)CrossRefGoogle Scholar
  54. 54.
    Y. Pan, Y. Liu, C. Liu, Appl. Surf. Sci. 357, 1133 (2015)CrossRefGoogle Scholar
  55. 55.
    S.J. Rowley-Neale, D.A. Brownson, G.C. Smith, D.A. Sawtell, P.J. Kelly, C.E. Banks, Nanoscale 7, 18152 (2015)CrossRefGoogle Scholar
  56. 56.
    J. Jiang, L. Huang, X. Liu, L. Ai, ACS Appl. Mater. Inter. 9, 7193 (2017)CrossRefGoogle Scholar
  57. 57.
    C. Cao, L. Wei, M. Su, G. Wang, J. Shen, Carbon 112, 27 (2017)CrossRefGoogle Scholar
  58. 58.
    R.J. Bouchard, P.A. Russo, A. Wold, Inorg. Chem. 4, 685 (1965)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Li Zhang
    • 1
  • Qingman Liang
    • 1
  • Yang Huang
    • 1
  • Hua Li
    • 1
  • Minjie Zhou
    • 1
  • Binhong He
    • 1
  • Younian Liu
    • 2
  • Haihua Yang
    • 1
  • Jianhui Yan
    • 1
  1. 1.School of Chemistry and Chemical EngineeringHunan Institute of Science and TechnologyYueyangPeople’s Republic of China
  2. 2.College of Chemistry and Chemical EngineeringCentral South UniversityChangshaPeople’s Republic of China

Personalised recommendations