Advertisement

Single-step electrochemical deposition of Mn2+ doped FeS2 thin films on ITO conducting glass substrates: physical, electrochemical and electrocatalytic properties

  • P. PrabukanthanEmail author
  • S. Thamaraiselvi
  • G. Harichandran
  • J. Theerthagiri
Article
  • 14 Downloads

Abstract

Mn2+ doped FeS2 thin films were deposited on ITO coated conducting glass substrate at 50 °C in an aqueous medium by simple electrochemical deposition technique. The structural and phase purity of the Mn2+ doped FeS2 thin films were investigated using XRD technique. The XRD analysis revelaed that the fabricated thin films were cubic structure along with the (200) plane preferential orientation. The diffraction peak slightly shifted towards lower 2θ values which confirmed that doping of Mn ions into FeS2 host matrixes. The calculated band gap energy of Mn2+ doped FeS2 thin films showed a red shift of absorption edge compared to undoped FeS2 thin film. EIS indicated that Mn2+ doped FeS2 thin films showed lower charge transfer resistance with better conductivity nature compared to undoped sample. Moreover, the photo electrochemical measurements carried out for the optimized Mn2+ doped FeS2 thin film which revealed the faster migration of photo-induced charge-carriers. Electro catalytic activity of Mn-doped FeS2 thin films were studied for the redox reaction of iodide/triiodide (I/I3) by using cyclic voltammetry measurement.

Notes

Acknowledgements

One of the authors (P. Prabukanthan) wishes to acknowledge University Grant Commission (UGC), India, for the financial assistance through major research project (MRP) scheme [File No. 43-399/2014(SR)].

References

  1. 1.
    S. Khalid, M.A. Malik, D.J. Lewis, P. Kevin, E. Ahmed, Y. Khan, P. O’Brien, Transition metal doped pyrite (FeS2) thin films: structural properties and evaluation of optical band gap energies. J. Mater. Chem. C 3, 12068–12076 (2015).  https://doi.org/10.1039/C5TC03275J CrossRefGoogle Scholar
  2. 2.
    P. Prabukanthan, S. Thamaraiselvi, G. Harichandran, Single step electrochemical deposition of p-type undoped and Co2+ doped FeS2 thin films and performance in heterojunction solid solar cells. J. Electrochem. Soc. 164, D581–D589 (2017).  https://doi.org/10.1149/2.0991709jes CrossRefGoogle Scholar
  3. 3.
    M. Gong, A. Kirkeminde, S. Ren, Symmetry-defying iron pyrite (FeS2) nanocrystals through oriented attachment. Sci. Rep. 3, 1–6 (2013).  https://doi.org/10.1038/srep02092 Google Scholar
  4. 4.
    S. Bae, D. Kim, W. Lee, Degradation of diclofenac by pyrite catalyzed Fenton oxidation. Appl. Catal. B 134–135, 93–102 (2013).  https://doi.org/10.1016/j.apcatb.2012.12.031 CrossRefGoogle Scholar
  5. 5.
    I. Zutic, J. Fabian, S. Das Sarma, Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004).  https://doi.org/10.1103/RevModPhys.76.323 CrossRefGoogle Scholar
  6. 6.
    J. Xia, J.Q. Jiao, B.L. Dai, W.D. Qiu, S.X. He, W.T. Qiu, P.K. Shen, L.P. Chen, Fecile synthesis of FeS2 nanocrystals and their magnetic and electrochemical properties. RSC Adv. 3, 6132–6140 (2013).  https://doi.org/10.1039/C3RA22405H CrossRefGoogle Scholar
  7. 7.
    S. Shukla, W. Joel, Q. Ager, T. Xiong, Sritharan, Scientific and technological assessment of iron pyrite for use in solar devices. Energy Technol. 6, 8–20 (2018).  https://doi.org/10.1002/ente.201700638 CrossRefGoogle Scholar
  8. 8.
    M.G. Gong, A. Kirkeminde, N. Kumar, H. Zhao, S.Q. Ren, Ionic-passivated FeS2 photocapacitors for energy coversion and storage. Chem. Commun. 49, 9260–9262 (2013).  https://doi.org/10.1039/C3CC45088K CrossRefGoogle Scholar
  9. 9.
    S.L. Liu, M.M. Li, S. Li, H.L. Li, L. Yan, Synthesis and adsorption/photocatalysis performance of pyrite FeS2. Appl. Surf. Sci. 268, 213–217 (2013).  https://doi.org/10.1016/j.apsusc.2012.12.061 CrossRefGoogle Scholar
  10. 10.
    E.J. Kim, B. Batchelor, Synthesis and characterization of pyrite (FeS2) using microwave irradiation. Mater. Res. Bull. 44, 1553–1558 (2009).  https://doi.org/10.1016/j.materresbull.2009.02.006 CrossRefGoogle Scholar
  11. 11.
    G. Chatzitheodrou, S. Fiechter, M. Kunst, W. Jaegermann, H. Tributsch, Thin photoactive FeS2 (pyrite) films. Mater. Res. Bull. 21, 1481–1487 (1986).  https://doi.org/10.1016/0025-5408(86)90088-7 CrossRefGoogle Scholar
  12. 12.
    R.J. Soukup, P. Prabukanthan, N.J. Ianno, C.A. Kamler, D.G. Sekora, Formation of pyrite (FeS2) thin films by thermal sulfurization magnetron sputtered iron. J. Vac. Sci. Technol. A 29(1–5), 011001 (2011).  https://doi.org/10.1116/1.3517739 CrossRefGoogle Scholar
  13. 13.
    D. Lichtenberger, K. Ellmer, R. Schieck, S. Fiechter, H. Tributsch, Structural, optical and electrical properties of polycrystalline iron pyrite layers deposited by reactive d.c. magnetron sputtering. Thin Solid Films 246, 6–12 (1994).  https://doi.org/10.1016/0040-6090(94)90723-4 CrossRefGoogle Scholar
  14. 14.
    Q. Yu, S. Cai, Z. Jin, Z. Yan, Evolutions of composition, microstructure and optical properties of Mn doped pyrite (FeS2) films prepared by chemical bath deposition. Mater. Res. Bull. 48, 3601–3606 (2013).  https://doi.org/10.1016/j.materresbull.2013.05.074 CrossRefGoogle Scholar
  15. 15.
    S.D. Disale, S.S. Garje, Deposition of copper doped iron sulfide (CuxFe1–xS) thin films using aerosol-assisted chemical vapor deposition technique. Appl. Organomet. Chem. 24, 734–740 (2010).  https://doi.org/10.1002/aoc.1676 CrossRefGoogle Scholar
  16. 16.
    S. Nakamura, A. Yamamoto, Electrcodeposition of pyrite (FeS2) thin films for photovoltaic cells. Sol. Energy Mater. Sol. Cells 65, 79–85 (2001).  https://doi.org/10.1016/S0927-0248(00)00080-5 CrossRefGoogle Scholar
  17. 17.
    N. Arbi, I. Ben Assaker, M. Gannouni, A. Kriaa, R. Chtourou, Effect of manganese concentration on physical and electrochemical properties of Mn2+ doped ZnS thin films deposited onto ITO-(glass) substrates by electordeposition techniques. J. Mater. Sci.: Mater. Electron. 28, 4997–5005 (2017).  https://doi.org/10.1007/s10854-016-6155-0 Google Scholar
  18. 18.
    Q. Fu, J. Chen, C. Shi, D. Ma, Room-temperature sol–gel derived molybdenum oxide thin films for efficient and stable solution-processed organic light-emitting diodes. ACS Appl. Mater. Interfaces 5, 6024–6029 (2013).  https://doi.org/10.1021/am4007319 CrossRefGoogle Scholar
  19. 19.
    F. Martinez-Rojas, M. Hssein, Z. El Jouad, F. Armijo, L. Cattin, G. Louarn, N. Stephant, M.A. del Valle, M. Addou, J.P. Soto, J.C. Bernede, Mo(SxOy) thin films deposited by electrochemistry for application in organic photovoltaic cells. Mater. Chem. Phys. 201, 331–338 (2017).  https://doi.org/10.1016/j.matchemphys.2017.08.021 CrossRefGoogle Scholar
  20. 20.
    P. Prabukanthan, R.J. Soukup, N.J. Ianno, A. Sarkar, C.A. .Kamler, E.L. Extrom, J. Olejnicek, S.A. Darveau, Chemical bath deposition (CBD) of iron sulfide thin films for photovoltaic applications, crystallographic and optical properties. In Proceedings of the 35th Photovoltaics specialists Conference, Institute of Electrical and Electronics Engineers (IEEE), pp. 002965–002969 (2010).  https://doi.org/10.1109/PVSC.2010.5614465
  21. 21.
    P. Prabukanthan, G. Harichandran, Electrochemical deposition of n-type ZnSe thin film buffer layer for solar cells. J. Electrochem. Soc. 14, D736–D741 (2014).  https://doi.org/10.1149/2.0261414jes CrossRefGoogle Scholar
  22. 22.
    P. Prabukanthan, R. Dhanasekaran, Growth of CuGaS2 single crystals by chemical vapor Transport and characterization. Cryst. Growth Des. 7, 618–623 (2007)  https://doi.org/10.1021/cg060450o CrossRefGoogle Scholar
  23. 23.
    P. Prabukanthan, S. Thamaraiselvi, G. Harichandran, Structural, morphological, electrocatalytic activity and photocurrent properties of electrochemically deposited FeS2 thin films. J. Mater. Sci.: Mater. Electron. 29, 11951–11963 (2018).  https://doi.org/10.1007/s10854-018-9297-4 Google Scholar
  24. 24.
    B. Silwana, C. van der Horst, E. Iwuoha, V. Somerset, Synthesis, characterization and electrochemical evaluation of reduced grapheme oxide modified antimony nanoparticles. Thin Solid Films 592, 124 – 134 (2015).  https://doi.org/10.1016/j.tsf.2015.09.010 CrossRefGoogle Scholar
  25. 25.
    P. Prabukanthan, R. Lakshmi, G. Harichandran, T. Tatarchuk, Photovoltaic device performance of pure, manganese (Mn2+) doped and irradiated CuInSe2 thin films. New J. Chem. 42, 11642–11652 (2018).  https://doi.org/10.1039/C8NJ01056K CrossRefGoogle Scholar
  26. 26.
    Z. Li, F. Gong, G. Zhou, Z.S. Wang, NiS2/reduced grapheme oxide nanocomposites for efficient dye-sensitized solar cells. J. Phys. Chem. C 117, 6561–6566 (2013).  https://doi.org/10.1021/jp401032c CrossRefGoogle Scholar
  27. 27.
    X. Zuo, R. Zhang, B. Yang, G. Li, H. Tang, H. Zhang, M. Wu, Y. Ma, S. Jin, K. Zhu, NiS nanoparticles anchored on reduced grapheme oxide to enhance the performance of dye-sensitized solar cells. J. Mater. Sci.: Mater. Electron. 26, 8176–8181 (2015).  https://doi.org/10.1007/s10854-015-3478-1 Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Materials Chemistry Lab, Department of ChemistryMuthurangam Government Arts CollegeVelloreIndia
  2. 2.Department of Polymer ScienceUniversity of MadrasChennaiIndia
  3. 3.Centre of Excellence for Energy Research, Centre for Nanoscience and NanotechnologySathyabama Institute of Science and Technology (Deemed to be University)ChennaiIndia

Personalised recommendations