Advertisement

The effect of oxygen pressure on the structural and photoluminescence properties of pulsed laser deposited (Y-Gd)3Al5O12:Ce3+ thin films

  • P. C. Korir
  • F. B. Dejene
Article
  • 17 Downloads

Abstract

Thin films of (Y-Gd)3Al5O12:Ce3+ phosphor were deposited on Si (100) substrate by pulsed laser deposition technique at substrate temperature of 300 °C. The effect of oxygen pressure on the structural and photoluminescence properties of the films have been studied. X-ray diffraction analysis confirmed the formation of Y3Al5O12 cubic structure for the films. A slight shift in the diffraction peaks to higher two theta angles was observed from the films when compared to those of the phosphor in powder form. This shift could be attributed to lattice expansion caused by the differences in ionic radius when Y3+ is partially substituted by the larger Gd3+ ion during laser ablation process. The crystallinity of the films increases as a function of oxygen pressure in the range of 1–20 mTorr then decreases with further increase in pressure to 60 mTorr. Surface morphology of the films were significantly affected by oxygen pressure, with an increased in particle number density for film deposited under 20 mTorr oxygen pressure. Photoluminescence spectra show broad band emission centered at around 545 nm arising from the 5d → 4f electronic transition of Ce3+ in the phosphor. The highest PL intensity was obtained from film deposited under 20 mTorr oxygen pressure. Optical measurements show that the films were highly reflective above 500 nm with reflectance up to 94%. Two optical absorption peaks for cerium were observed at around 307 and 467 nm, and found to increase in intensity with oxygen pressure up to 20 mTorr.

Notes

Acknowledgements

The authors would like to thank the University of the Free State and CSIR, South Africa, for providing us with the pulsed laser deposition system (PLD) for sample preparation. This project work is supported by the Africa Laser Center (ALC). We would like to acknowledge, Lucas Erasmus at the Physics Department, University of the Free State for assisting with the thin film deposition using the pulsed laser deposition (PLD) technique.

References

  1. 1.
    M. Siminovitch, LEDs: The Next Generation Light Source. A review of the key technology and market drivers and the directions for high-efficiency lighting (2010), https://cltc.ucdavis.edu/publication/leds-next-generation-light-source. Accessed 9 Jan 2019
  2. 2.
    M.G. Craford, IEEE Circuits Dev. Mag. 8, 24–29 (1992)CrossRefGoogle Scholar
  3. 3.
    A. Piquette, W. Bergbauer, B. Galler, K.C. Mishra, ECS J. Solid State Sci. Technol. 5(1), 3146–3159 (2016)CrossRefGoogle Scholar
  4. 4.
    S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, K. Leo, Nature. 459, 234–238 (2009)CrossRefGoogle Scholar
  5. 5.
    P.C. Shen, M.S. Lin, C.F. Lin, Sci. Rep. 4, 5307 (2014)CrossRefGoogle Scholar
  6. 6.
    Q. Wang, D. Ma, Chem. Soc. Rev. 39(7), 2387–2398 (2010)CrossRefGoogle Scholar
  7. 7.
    B.G. Zhai, L.L. Chen, M.Y. Li, Y.M. Huang, Optoelectron. Mater. 2, 8–18 (2018)Google Scholar
  8. 8.
    Y.X. Pan, M.M. Wu, Q. Su, J. Phys. Chem. Solid. 65, 845 (2004)CrossRefGoogle Scholar
  9. 9.
    Z. Xia, A. Meijerink, Chem. Soc. Rev. 46(1), 275–299 (2017)CrossRefGoogle Scholar
  10. 10.
    A. Potdevin, G. Chadeyron, V. Briois, R. Mahiou, Mater. Chem. Phys. 130, 500 (2011)CrossRefGoogle Scholar
  11. 11.
    V.M. Lisitsyn, Y. Ju, S.A. Stepanov, N.M. Soschin, J. Phys. 830, 012160 (2017)Google Scholar
  12. 12.
    E.J. Popovici, M. Morar, E. Bica, I. Perhaita, A.I. Cadis, E. Indrea, L. Barbu-Tudoran, J. Optoelectron. Adv. Mater. 13, 617–624 (2011)Google Scholar
  13. 13.
    J. Wang, T. Han, T. Lang, M. Tu, L. Peng, Opt. Eng. 54(11), 117106 (2015)CrossRefGoogle Scholar
  14. 14.
    C.C. Chiang, M.S. Tsai, M.H. Hon, J. Electrochem. Soc. 154(10), 326–329 (2007)CrossRefGoogle Scholar
  15. 15.
    J.Y. Park, H.C. Jung, G.S.R. Raju, B.K. Moon, J.H. Jeong, S.M. Son, J.H. Kim, Opt. Mater. 32, 293–296 (2009)CrossRefGoogle Scholar
  16. 16.
    H.S. Jang, W.B. Im, D.C. Lee, D.Y. Jeon, S.S. Kim, J. Lumin. 126, 371–377 (2007)CrossRefGoogle Scholar
  17. 17.
    H. Shi, C. Zhu, J. Huang, J. Chen, D. Chen, W. Wang, F. Wang, Y. Cao, X. Yuan, Opt. Mater. Express. 4(4), 649–655 (2014)CrossRefGoogle Scholar
  18. 18.
    V.P. Dotsenko, I.V. Berezovskaya, E.V. Zubar, N.P. Efryushina, N.I. Poletaev, Yu.A. Doroshenko, G.B. Stryganyuk, A.S. Voloshinovskii, J. Alloys Compd. 550, 159–163 (2013)CrossRefGoogle Scholar
  19. 19.
    A.M. Chinie, S. Georgescu, A. Mateescu, A. Stefan, Romanian J. Phys. 51, 827 (2006)Google Scholar
  20. 20.
    S.J. Wang, L. Lu, M.O. Lai, J.Y.H. Fuh, J. Appl. Phys. 105(8), 084102 (2009)CrossRefGoogle Scholar
  21. 21.
    G.R. Bai, H. Zhang, C.M. Foster, Thin Solid Films 321, 115 (1998)CrossRefGoogle Scholar
  22. 22.
    C. Nethravathi, S. Sen, N. Ravishankar, M. Rajamathi, C. Pietzonka, B. Harbrecht, J. Phys. Chem. B 109(23), 11468 (2005)CrossRefGoogle Scholar
  23. 23.
    T. Minami, T. Yamamoto, T. Miyata, Thin Solid Films, 366 (2000)Google Scholar
  24. 24.
    S. Kristoulakis, M. Suchea, M. Katharakis, N. Katsarakis, E. Koudoumas, G. Kiriakidis, Rev. Adv. Mater. Sci. 10, 331 (2005)Google Scholar
  25. 25.
    Y. Kokubun, H. Kimura, S. Nakagomi, J. Appl. Phys. 42, l904 (2003)CrossRefGoogle Scholar
  26. 26.
    E. György, I.N. Mihailescu, M. Kompitsas, A. Giannoudakos, Thin Solid Films 446, 178–183 (2004)CrossRefGoogle Scholar
  27. 27.
    F.J. Ochoa-Estrella, A. Vera-Marquina, I. Mejia, A.L. Leal-Cruz, M. Quevedo-López, J. Mater. Sci. 29(9), 7629–7636 (2018)Google Scholar
  28. 28.
    T. Peng, H. Yang, X. Pu, B. Hu, Z. Jian, C. Yan, Mater. Lett. 58, 352 (2004)CrossRefGoogle Scholar
  29. 29.
    Y. Shen, N. Xu, W. Hu, X. Xu, J. Sun, Z. Ying, J. Wu, Solid State Electron. 52, 1833 (2008)CrossRefGoogle Scholar
  30. 30.
    A. Matsunawa, S. Katayama, A. Susuki, T. Ariyasu, Trans. JWRI 15, 61 (1986)Google Scholar
  31. 31.
    S.U. Satilmis, A. Ege, M. Ayvacikli, A. Khatab, E. Ekdal, E.J. Popovici, M. Henini, N. Can, Opt. Mater. 34, 1921–1925 (2012)CrossRefGoogle Scholar
  32. 32.
    C.H. Lu, R. Jagannathan, Appl. Phys. Lett. 80, 3608–3610 (2002)CrossRefGoogle Scholar
  33. 33.
    P. Orgiani, R. Ciancio, A. Galdi, S. Amoruso, L. Maritato, Appl. Phys. Lett. 96, 032501 (2010)CrossRefGoogle Scholar
  34. 34.
    J. Schou, Appl. Surf. Sci. 255, 5191–5198 (2009)CrossRefGoogle Scholar
  35. 35.
    L. Wang, X. Zhang, Z. Hao, Y. Luo, J. Zhang, X. Wang, J. Appl. Phys. 108, 093515 (2010)CrossRefGoogle Scholar
  36. 36.
    B.D. Cullity, S.R. Stock, Elements of X-Ray Diffraction, 3rd edn. (Prentice Hall, Upper Saddle River, 2001)Google Scholar
  37. 37.
    J. Gonzalo, R.G. San Roman, J. Perriere, C.N. Afonso, R.P. Casero, Appl. Phys. A 66, 487 (1998)CrossRefGoogle Scholar
  38. 38.
    M. Acosta, I. Riech, E. Martin-Tovar, Adv. Condens. Matter Phys. (2013).  https://doi.org/10.1155/2013/970976 Google Scholar
  39. 39.
    W. Muying, Y. Shihui, H. Lin, Z. Geng, L. Dongxiong, Z. Weifeng, Appl. Surf. Sci. 292, 219 (2014)CrossRefGoogle Scholar
  40. 40.
    K. Ajay, K. Davinder Kaur, J. Nanoparticle Res. 13, 2485–2496 (2011)CrossRefGoogle Scholar
  41. 41.
    M.Y. Kim, D.S. Bae, Korean J. Mater. Res. 23(1), 31–34 (2013)CrossRefGoogle Scholar
  42. 42.
    M.P. Deshpande, N. Garg, S.V. Bhatt, P. Sakariya, S.H. Chaki, Mater. Sci. Semicond. Proc. 16(3), 915–22 (2013)CrossRefGoogle Scholar
  43. 43.
    A.B. Adriano, N.S. Ferreiraab, M.E. Valerio, RSC Adv. 7, 26839–26848 (2017)CrossRefGoogle Scholar
  44. 44.
    N. Gonçalves, J. Carvalho, Z. Lima, J. Sasaki, Mater. Lett. 72, 36–38 (2012)CrossRefGoogle Scholar
  45. 45.
    Z.V. Ooi, A.E.A. Saif, Y. Wahab, Z.A.Z. Jamal, In AIP Conference Proceedings., vol. 1835, No. 1 (AIP Publishing, Melville, 2017), p. 020011Google Scholar
  46. 46.
    R. Kelly, A. Miotello, D.B. Chrisey, G. K. Hubler, Pulsed Laser Deposition of Thin Films, 55 (Wiley, New York, 1994)Google Scholar
  47. 47.
    C.A. Schneider, W.S. Rasband, K.W. Eliceiri, Nature Methods. 9, 671–675 (2012)CrossRefGoogle Scholar
  48. 48.
    A. Infortuna, A.S. Harvey, L.J. Gauckler, Adv. Funct. Mater. 18, 127–135 (2008)CrossRefGoogle Scholar
  49. 49.
    V. Lojpur, A. Egelja, J. Pantić, V. Đorđević, B. Matović, M.D. Dramićanin, Sci. Sinter. 46(1), 75–82 (2014)CrossRefGoogle Scholar
  50. 50.
    A. Potdevin, G. Chadeyron, D. Boyer, R. Mahiou, J. Appl. Phys. 102, 073536 (2007)CrossRefGoogle Scholar
  51. 51.
    P.Y. Jia, J. Lin, X.M. Han, M. Yu, P.Y., Thin Solid Films 483, 122–129 (2005)CrossRefGoogle Scholar
  52. 52.
    V. Bachmann, C. Ronda, A. Meijerink, Chem. Mater. 21(10), 2077–2084 (2009)CrossRefGoogle Scholar
  53. 53.
    S.P. Feofilov, D.V. Arsentyev, A.B. Kulinkin, T. Gacoin, G. Mialon, R.S. Meltzer, C. Dujardin, J. Appl. Phys. 107, 064308 (2010)CrossRefGoogle Scholar
  54. 54.
    Q. Li, L. Gao, D. Yan, Mater. Chem. Phys. 64, 41 (2000)CrossRefGoogle Scholar
  55. 55.
    V. Tucureanu, A. Matei, I. Mihalache, M. Danila, M. Popescu, B. Bita, J. Mater. Sci. 50, 1883–1890 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of the Free State (Qwa Qwa campus)PhuthaditjhabaSouth Africa

Personalised recommendations