Advertisement

Revisiting the effects of carbon-doping at 1017 cm−3 level on dislocation behavior of Czochralski silicon: from room temperature to elevated temperatures

  • Yuxin Sun
  • Tong Zhao
  • Wu Lan
  • Jian Zhao
  • Zhenyi Ni
  • Jianjiang Zhao
  • Xuegong Yu
  • Xiangyang MaEmail author
  • Deren Yang
Article
  • 10 Downloads

Abstract

Carbon is an inevitable impurity subsidiary to oxygen in Czochralski silicon (CZ-Si). Its effects on the properties of CZ-Si have been investigated for decades. However, the research work addressing the dislocation behavior and therefore the mechanical strength of CZ-Si is considerably limited. The previous reports almost focused on the carbon effects on the dislocation behavior of CZ-Si at temperatures not lower than 800 °C. While, how the carbon-doping affects the dislocation behavior of CZ-Si at room temperature or the temperatures below 800 °C has been hardly revealed. In this work, we have comprehensively revisited the effects of carbon-doping at 1017 cm−3 level on the dislocation behavior of CZ-Si from room temperature to elevated temperatures up to 1000 °C. For the first time, we have found that the carbon-doping exerts the exact opposite effects on the dislocation behavior of CZ-Si across a certain temperature (∼ 750 °C). The carbon-doping facilitates the generation of dislocations under the nanoindentation at room temperature and promotes the gliding of microindentation-induced dislocations at temperatures below 750 °C. This is supposed to arise from that the carbon-doping reduces the lattice Peierls energy to a certain extent to resist the dislocation motion. On the contrary, at temperatures from 750 to 1000 °C, the carbon-doping suppresses the gliding of microindentation-induced dislocations, which is due to that the carbon-related complexes or/and oxygen precipitates exhibit the role of dislocation-locking. We believe that the present work gives an insight into the carbon effects on the mechanical strength of CZ-Si.

Notes

Acknowledgements

The author would like to thank the financial supports from Natural Science Foundation of China (Grant Nos. 61674126, 51532007). Xuegong Yu also acknowledges the financial support from the Science Challenge Project (No. TZ2016003-1).

References

  1. 1.
    K. Sumino, Metall. Mater. Trans. A 30, 1465 (1999)CrossRefGoogle Scholar
  2. 2.
    S.M. Hu, Appl. Phys. Lett. 31, 53 (1977)CrossRefGoogle Scholar
  3. 3.
    S. Senkader, A. Giannattasio, R.J. Falster, P.R. Wilshaw, Solid State Phenom. 95–96, 43 (2004)Google Scholar
  4. 4.
    I. Yonenaga, J. Appl. Phys. 98, 066109 (2005)CrossRefGoogle Scholar
  5. 5.
    D.S. Li, D.R. Yang, D.L. Que, Phys. B 273-4, 553 (1999)CrossRefGoogle Scholar
  6. 6.
    T. Fukuda, A. Ohsawa, J. Appl. Phys. 73, 112 (1993)CrossRefGoogle Scholar
  7. 7.
    M. Akatsuka, K. Sueoka, Jpn J Appl Phys 1 40, 1240 (2001)CrossRefGoogle Scholar
  8. 8.
    J.D. Murphy, C.R. Alpass, A. Giannattasio, S. Senkader, D. Emiroglu, ECS Trans. 3, 239 (2006)CrossRefGoogle Scholar
  9. 9.
    P.D. Liu, X.U. Ma, J.X. Zhang, L.B. Li, D.L. Que, J. Appl. Phys. 87, 3669 (2000)CrossRefGoogle Scholar
  10. 10.
    F. Shimura, J. Appl. Phys. 59, 3251 (1986)CrossRefGoogle Scholar
  11. 11.
    Q. Sun, K.H. Yao, J. Lagowski, H.C. Gatos, J. Appl. Phys. 67, 4313 (1990)CrossRefGoogle Scholar
  12. 12.
    J.H. Chen, D.R. Yang, X.Y. Ma, D.L. Que, J. Cryst. Growth 290, 61 (2006)CrossRefGoogle Scholar
  13. 13.
    T. Munakata, S. Someya, I. Tanasawa, Int. J. Heat Mass Trans. 47, 4525 (2004)CrossRefGoogle Scholar
  14. 14.
    X.Y. Ma, L.M. Fu, D.X. Tian, D.R. Yang, J. Appl. Phys. 98, 084502 (2005)CrossRefGoogle Scholar
  15. 15.
    D.R. Yang, X.Y. Ma, R.X. Fan, J.X. Zhang, L.B. Li, D.L. Que, Phys. B 273-4, 308 (1999)CrossRefGoogle Scholar
  16. 16.
    Q. Sun, K.H. Yao, H.C. Gatos, J. Lagowski, J. Appl. Phys. 71, 3760 (1992)CrossRefGoogle Scholar
  17. 17.
    G. Kissinger, T. Muller, A. Sattler, W. Hackl, M. Weber, U. Lambert, A. Huber, P. Krottenthaler, H. Richter, W. von Ammon, Gettering and defect engineering in semiconductor technology Xi 108–109, 17 (2005)Google Scholar
  18. 18.
    J. Takahashi, K. Nakai, K. Kawakami, Y. Inoue, H. Yokota, A. Tachikawa, A. Ikari, W. Ohashi, Jpn. J. Appl. Phys. 1 42, 363 (2003)CrossRefGoogle Scholar
  19. 19.
    S. Danyluk, D.S. Lim, J. Kalejs, J. Mater. Sci. Lett. 4, 1135 (1985)CrossRefGoogle Scholar
  20. 20.
    A.R. Bean, R.C. Newman, J.J. Thomson, J. Phys. Chem. Solids 9, 1211 (1971)CrossRefGoogle Scholar
  21. 21.
    K. Yasutake, M. Umeno, H. Kawabe, Appl. Phys. Lett. 37, 789 (1980)CrossRefGoogle Scholar
  22. 22.
    I. Yonenaga, K. Sumino, Jpn. J. Appl. Phys. 2 23, L590 (1984)CrossRefGoogle Scholar
  23. 23.
    D. Ge, A.M. Minor, E.A. Stach, J.W. Morris, Philos. Mag. 86, 4069 (2006)CrossRefGoogle Scholar
  24. 24.
    S.M. Hu, J. Appl. Phys. 46, 1470 (1975)CrossRefGoogle Scholar
  25. 25.
    K. Sueoka, E. Kamiyama, J. Vanhellemont, J. Appl. Phys. 114, 153510 (2013)CrossRefGoogle Scholar
  26. 26.
    C.A. Schuh, Mater Today 9, 32 (2006)CrossRefGoogle Scholar
  27. 27.
    J.I. Jang, M.J. Lance, S.Q. Wen, T.Y. Tsui, G.M. Pharr, Acta Mater. 53, 1759 (2005)CrossRefGoogle Scholar
  28. 28.
    J.P. Hirth, J. Lothe, Theory of dislocations. (McGraw-Hill, New York, 1968)Google Scholar
  29. 29.
    K.T. Faber, K.J. Malloy, Academic Press. p. 66 (1992)Google Scholar
  30. 30.
    I. Yonenaga, J. Phys. Condens. Matter. 14, 13179 (2002)CrossRefGoogle Scholar
  31. 31.
    I. Yonenaga, Mater. Sci. Eng. B Solid 124, 293 (2005)CrossRefGoogle Scholar
  32. 32.
    F. Shimura, J.P. Baiardo, P. Fraundorf, Appl. Phys. Lett. 46, 941 (1985)CrossRefGoogle Scholar
  33. 33.
    F. Shimura, T. Higuchi, R.S. Hockett, Appl. Phys. Lett. 53, 69 (1988)CrossRefGoogle Scholar
  34. 34.
    P. Fraundorf, G.K. Fraundorf, F. Shimura, J. Appl. Phys. 58, 4049 (1985)CrossRefGoogle Scholar
  35. 35.
    S. Senkader, K. Jurkschat, D. Gambaro, R.J. Falster, P.R. Wilshaw, Philos. Mag. A 81, 759 (2001)CrossRefGoogle Scholar
  36. 36.
    T. Fukuda, Appl. Phys. Lett. 65, 1376 (1994)CrossRefGoogle Scholar
  37. 37.
    I. Yonenaga, K. Sumino, J. Appl. Phys. 80, 734 (1996)CrossRefGoogle Scholar
  38. 38.
    F. Shimura, R.S. Hockett, D.A. Reed, D.H. Wayne, Appl. Phys. Lett. 47, 794 (1985)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Yuxin Sun
    • 1
  • Tong Zhao
    • 1
  • Wu Lan
    • 1
  • Jian Zhao
    • 1
  • Zhenyi Ni
    • 1
  • Jianjiang Zhao
    • 1
  • Xuegong Yu
    • 1
  • Xiangyang Ma
    • 1
    Email author
  • Deren Yang
    • 1
  1. 1.State Key Laboratory of Silicon Materials, School of Materials Science and EngineeringZhejiang UniversityHangzhouPeople’s Republic of China

Personalised recommendations