Influence of B3+- and Na+-ions on electrical property and temperature sensitivity of NiO-based ceramics

  • Zefang Yang
  • Hong Zhang
  • Zhenli He
  • Bicai Li
  • Zhicheng LiEmail author


For various applications of negative temperature coefficient (NTC) thermistors, it is useful to develop a material system to achieve different room-temperature resistivities (ρ25) and temperature sensitivity (B value) by adjusting slightly the chemical composition. Here, B3+/Na+-modified NiO-based ceramics (denoted as xB/yNa-NiO, 0 ≤ x ≤ 0.04 and 0 ≤ y ≤ 0.07) were prepared for NTC thermistors. The phase component and microstructure of the ceramics were detected respectively by using X-ray diffraction and scanning electron microscope. The related electrical properties and temperature sensitivity were investigated by analyzing the resistivity-temperature characteristic and related complex impedance spectra. The results show that all the prepared ceramics have a cubic crystalline structure and present typical NTC characteristics. By changing the concentrations of B3+- and Na+-ions in the compounds, ρ25 from 47.94 Ω cm to 1.024 MΩ cm and B values from 2582 to 8019 K were achieved. The analysis of complex impedance spectra reveals that both grain effect and grain boundary effect contribute to the electrical conduction and NTC feature. The conduction mechanisms combining with band conduction and polaron hopping model are proposed for the NTC effect in xB/yNa-NiO thermistors.


  1. 1.
    C. Ma, H. Gao, J. Alloys Compd. 749, 853–858 (2018)CrossRefGoogle Scholar
  2. 2.
    M. Schubert, C. Münch, S. Schuurman, V. Poulain, J. Kita, R. Moos, J. Eur. Ceram. Soc. 38, 613–619 (2018)CrossRefGoogle Scholar
  3. 3.
    W. Fu, Z. Li, P. Li, Y. Zeng, H. Zhang, J. Mater. Sci. Mater. Electron. 29, 11637–11645 (2018)CrossRefGoogle Scholar
  4. 4.
    Y. Liu, S. Leng, S. Li, W. Fu, Z. Li, H. Zhang, Mater. Res. Express 5, 036307 (2018)CrossRefGoogle Scholar
  5. 5.
    J. Guo, H. Zhang, Z. He, S. Li, Z. Li, J. Mater. Sci. Mater. Electron. 29, 2491–2499 (2018)CrossRefGoogle Scholar
  6. 6.
    X. Xie, J. Wang, L. Chen, Z. Hu, S. Yan, A. Chang, J. Mater. Sci. Mater. Electron. 28, 1–7 (2016)Google Scholar
  7. 7.
    S. Liang, C. Cao, H. Li, M. Luo, M. Gao, X. Qin, Microelectron. Eng. 182, 53–56 (2017)CrossRefGoogle Scholar
  8. 8.
    C. Ma, H. Gao, J. Mater. Sci. Mater. Electron. 28, 6699–6703 (2017)CrossRefGoogle Scholar
  9. 9.
    H. Han, H. Lee, J. Lim, K. Kim, Y. Hong, J. Lee, J. Forrester, J. Ryu, S. Mhin, Ceram. Int. 43, 16070–16075 (2017)CrossRefGoogle Scholar
  10. 10.
    D.T. Le, C.J. Jeon, Y.H. Jeong, J.S. Yun, D.H. Yoon, J.H. Cho, J. Alloys Compd. 686, 982–988 (2016)CrossRefGoogle Scholar
  11. 11.
    H. Han, S. Mhin, K.R. Park, K.M. Kim, J.I. Lee, J.H. Ryu, Ceram. Int. 43, 10528–10532 (2017)CrossRefGoogle Scholar
  12. 12.
    M. Guan, J. Yao, W. Kong, J. Wang, A. Chang, J. Mater. Sci. Mater. Electron. 29, 5082–5086 (2018)CrossRefGoogle Scholar
  13. 13.
    C. Ma, Y. Liu, Y. Lu, H. Qian, J. Alloys Compd. 650, 931–935 (2015)CrossRefGoogle Scholar
  14. 14.
    P. Luo, B. Zhang, Q. Zhao, D. He, A. Chang, J. Mater. Sci. Mater. Electron. 28, 9265–9271 (2017)CrossRefGoogle Scholar
  15. 15.
    S. Li, C. Yuan, X. Liu, X. Liu, F. Liu, Y. Luo, X. Li, J. Xu, Mater. Sci. Semicond. Process. 80, 118–122 (2018)CrossRefGoogle Scholar
  16. 16.
    T. Yang, B. Zhang, P. Luo, Q. Zhao, D. He, A. Chang, J. Mater. Sci. Mater. Electron. 28, 1–4 (2017)Google Scholar
  17. 17.
    J. Zhang, W. Kong, A. Chang, J. Mater. Sci. Mater. Electron. 29, 9613–9620 (2018)CrossRefGoogle Scholar
  18. 18.
    J. Zhang, H. Zhang, B. Yang, Y. Zhang, Z. Li, J. Mater. Sci. Mater. Electron. 27, 4935–4942 (2016)CrossRefGoogle Scholar
  19. 19.
    B. Yang, H. Zhang, J. Guo, Y. Liu, Z. Li, Front. Mater. Sci. 10, 413–421 (2016)CrossRefGoogle Scholar
  20. 20.
    Z. Guo, J. Shao, H. Lin, M. Jiang, S. Chen, Z. Li, J. Mater. Sci. Mater. Electron. 28, 11871–11877 (2017)CrossRefGoogle Scholar
  21. 21.
    G. Wang, H. Zhang, X. Sun, Y. Liu, Z. Li, J. Mater. Sci. Mater. Electron. 28, 363–370 (2017)CrossRefGoogle Scholar
  22. 22.
    X. Sun, Z. Li, W. Fu, S. Chen, H. Zhang, J. Mater. Sci. Mater. Electron. 29, 343–350 (2018)CrossRefGoogle Scholar
  23. 23.
    X. Sun, S. Leng, H. Zhang, Z. He, Z. Li, J. Alloys Compd. 763, 975–982 (2018)CrossRefGoogle Scholar
  24. 24.
    M. Karthikeyan, S. Um, J. Alloys Compd. 695, 1770–1777 (2017)CrossRefGoogle Scholar
  25. 25.
    J. Wang, H. Zhang, X. Sun, Y. Liu, Z. Li, J. Mater. Sci. Mater. Electron. 27, 11902–11908 (2016)CrossRefGoogle Scholar
  26. 26.
    M. Rahman, R. Radhakrishnan, R. Gopalakrishnan, J. Alloys Compd. 742, 421–429 (2018)CrossRefGoogle Scholar
  27. 27.
    L. Cattin, B.A. Reguig, A. Khelil, M. Morsli, K. Benchouk, J.C. Bernede, Appl. Surf. Sci. 254, 5814–5821 (2008)CrossRefGoogle Scholar
  28. 28.
    J. Ryu, D. Park, R. Schmidt, J. Appl. Phys. 109, 113722 (2011)CrossRefGoogle Scholar
  29. 29.
    X. Dominguez-Benetton, S. Sevda, K. Vanbroekhovena, D. Pant, Chem. Soc. Rev. 41, 7228–7246 (2012)CrossRefGoogle Scholar
  30. 30.
    M. Idrees, M. Nadeem, M. Hassan, J. Phys. D Appl. Phys. 43, 155401 (2010)CrossRefGoogle Scholar
  31. 31.
    A.K. Jonscher, Nature 276, 673–678 (1977)CrossRefGoogle Scholar
  32. 32.
    R. Gerhardt, J. Phys. Chem. Solids 55, 1491–1506 (1994)CrossRefGoogle Scholar
  33. 33.
    E.D. Macklen, J. Phys. Chem. Solids 47, 1073–1079 (1986)CrossRefGoogle Scholar
  34. 34.
    J. Jung, J. Töpfer, J. Mürbe, A. Feltz, J. Eur. Ceram. Soc. 6, 351–359 (1990)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Zefang Yang
    • 1
  • Hong Zhang
    • 1
  • Zhenli He
    • 1
  • Bicai Li
    • 1
  • Zhicheng Li
    • 1
    Email author
  1. 1.School of Materials Science and EngineeringCentral South UniversityChangshaChina

Personalised recommendations