Advertisement

Nanoparticles-assembled ZnFe2O4 mesoporous nanorods for physicochemical and magnetic properties

  • Sapna
  • Narender Budhiraja
  • Vinod Kumar
  • S. K. SinghEmail author
Article
  • 28 Downloads

Abstract

Hierarchically one dimensional (1-D) mesoporous ZnFe2O4 rods with nanoparticles as their building blocks have been synthesized by the solvothermal approach. The influence of annealing temperature on structural, morphological, optical and magnetic properties was intensively investigated. X-ray diffraction was used to ascertain the phase purity of synthesized samples. To perceive the information on morphological and structural features, field emission scanning electron microscopy and high resolution transmission electron microscopy with energy dispersive spectroscopy was probed. It was observed that nanorods with high aspect ratio were obtained when treated at 600 °C (ZF600) annealing temperature as compared to 400 °C (ZF400). Fourier transform infra-red spectroscopy was resorted to gain the insight of bonding mechanism associated with ZF400 and ZF600. To enrich the study on material chemistry and defects, Raman spectroscopy and X-ray photoelectron spectroscopy was performed. Brunauer–Emmett–Teller envisioned the surface area of ZF400 and ZF600. It was found that surface area decreases with increase in annealing temperature. UV–Vis spectroscopy expounds that the optical band gap increases with annealing temperature from 3.0 to 3.3 eV for ZF400 to ZF600 respectively. Magnetic measurements were performed on vibrating sample magnetometer at room temperature and the results decipher the superparamagnetic nature of the synthesized material. Additionally, saturation magnetization was found to increase with annealing temperature.

Notes

Acknowledgements

Authors, Sapna and Narender Budhiraja are grateful to the Department of Science and Technology (DST), Govt. Of Haryana for their financial supports SRF under RETC project (HSCST/446) at Department of Physics, DCR University of Science and Technology, Murthal, India.

References

  1. 1.
    H. Cong, S. Yu, Cryst. Growth Des. 9, 210 (2009)CrossRefGoogle Scholar
  2. 2.
    Sapna, N. Budhiraja, V. Kumar, S.K. Singh, Ceram. Int. 44, 13806 (2018)CrossRefGoogle Scholar
  3. 3.
    N. Budhiraja, Sapna, M. Tomar, V. Gupta, S.K. Singh, AIP Conf. Proc. (2018).  https://doi.org/10.1063/1.5029062 Google Scholar
  4. 4.
    P. Liu, Y. Huang, R.S.C. Adv. (2013).  https://doi.org/10.1039/C3RA43073A Google Scholar
  5. 5.
    Y. Li, T. Wu, K. Jiang, G. Tong, K. Jin et al., J. Mater. Chem. C, (2016).  https://doi.org/10.1039/C6TC01900E Google Scholar
  6. 6.
    S. Ozturk, N. Kilinc, I. Torun et al., Int. J. Hydrog. Energy 39, 5194 (2014)CrossRefGoogle Scholar
  7. 7.
    X. Zhou, X. Li, H. Sun, P. Sun, X. Liang, F. Liu et al., Appl. Mater. Interfaces (2015).  https://doi.org/10.1021/acsami.5b03537 Google Scholar
  8. 8.
    S. Thirumalairajan, K. Girija, V. Mastelaro, N. Ponpandian, New J. Chem. (2014).  https://doi.org/10.1039/C4NJ01029A Google Scholar
  9. 9.
    C. Singh, A. Goyal, S. Singhal, Nanoscale (2014).  https://doi.org/10.1039/c4nr01730g Google Scholar
  10. 10.
    O. Kubo, E. Ogawa, J. Magn. Magn. Mater. 134, 376 (2019)CrossRefGoogle Scholar
  11. 11.
    I. Sharifi, H. Shokrollahi, S. Amiri, J. Magn. Magn. Mater. 324, 903 (2012)CrossRefGoogle Scholar
  12. 12.
    R. Ji, C. Cao, Z. Chen, H. Zhai, J. Bai, J. Mater. Chem. C (2014).  https://doi.org/10.1039/c4tc00167b Google Scholar
  13. 13.
    J. Li, Z. Liu, Z. Zhu, RSC Adv. 4, 51302 (2014)CrossRefGoogle Scholar
  14. 14.
    X. Huang, J. Zhang, S. Xiao, G. Chen, J. Am. Ceram. Soc. 1366, 1363 (2014)CrossRefGoogle Scholar
  15. 15.
    S. Giri, D. Ghosh, A. Kharitonov, C. Das, Funct. Mater. Lett. 5, 1 (2012)CrossRefGoogle Scholar
  16. 16.
    H.M. Fan, J.B. Yi, Y. Yang, K.W. Kho, H.R. Tan et al., ACS Nano 3, 2798 (2009)CrossRefGoogle Scholar
  17. 17.
    Z.P. Chen, W.Q. Fang, B. Zhang, H.G. Yang, J. Alloys Compd. 550, 348 (2013)CrossRefGoogle Scholar
  18. 18.
    M. Nidhin, S.S. Nazeer, R.S. Jayasree, M.S. Kiran, B.U. Nair et al., RSC Adv. 3, 6906 (2013)CrossRefGoogle Scholar
  19. 19.
    P. Hugounenq, M. Levy, D. Alloyeau, L. Lartigue, E. Dubois et al., J. Phys. Chem. C 116, 15702 (2012)CrossRefGoogle Scholar
  20. 20.
    L. Hao, Y. Zhao, Q. Jiao, P. Chen, RSC Adv. 4, 15650 (2014)CrossRefGoogle Scholar
  21. 21.
    M.M. Rahman, S.B. Khan, M. Faisal, A.M. Asiri, K.A. Alamry, Sensors Actuators B. Chem. 171–172, 932 (2012)CrossRefGoogle Scholar
  22. 22.
    S. Bai, S. Chen, L. Chen, K. Zhang, R. Luo, D. Li et al., Sensors Actuators B. Chem. 174, 51 (2012)CrossRefGoogle Scholar
  23. 23.
    W. Chen, Q. Liu, X. Zhu, M. Fu, Appl. Organometal Chem. (2017)  https://doi.org/10.1002/aoc.4017 Google Scholar
  24. 24.
    C. Deng, S. Zhang, Y. Wu, Nanoscale (2014).  https://doi.org/10.1039/b000000x Google Scholar
  25. 25.
    M. Rivero, A.D. Campo, A. Mayrol, E. Mazario et al., RSC Adv. (2016).  https://doi.org/10.1039/C6RA04145K Google Scholar
  26. 26.
    N. Kumari, V. Kumar, S.K. Singh, J. Alloys Compd. 622, 628 (2015)CrossRefGoogle Scholar
  27. 27.
    Z. Jia, D. Ren, Y. Liang, R. Zhu, Mater. Lett. 65, 3116 (2011)CrossRefGoogle Scholar
  28. 28.
    A. Singh, A. Singh, S. Singh, P. Tandon, B.C. Yadav, R.R. Yadav, J. Alloys Compd. 618, 475 (2015)CrossRefGoogle Scholar
  29. 29.
    X.B. Zhong, Z.Z. Yang, H.Y. Wang, L. Lu, B. Jin, M. Zha et al., J. Power Sources. 306, 718 (2016)CrossRefGoogle Scholar
  30. 30.
    X. Li, B. Zhang, C. Ju, X. Han, Y. Du, P. Xu, J. Phys. Chem. C. 115, 12350 (2011)CrossRefGoogle Scholar
  31. 31.
    B.L. Zhong, J. Hu, H. Liang, A. Cao, W. Song, L. Wan, Adv. Mater. 18, 2426 (2006)CrossRefGoogle Scholar
  32. 32.
    C. Burda, X. Chen, R. Narayanan, M.A. El-sayed, Chem. Rev. 105, 1025 (2005)CrossRefGoogle Scholar
  33. 33.
    R.L. Penn, J. Phys. Chem. B 108, 12707 (2004)CrossRefGoogle Scholar
  34. 34.
    J. Park, V. Privman, E. Matijevic, J. Phys. Chem. B 105, 11630 (2001)CrossRefGoogle Scholar
  35. 35.
    R. Liu, Y. Zhao, R. Huang, Y. Zhao, H. Zhou, Eur. J. Inorg. Chem. (2010).  https://doi.org/10.1002/ejic.201000430 Google Scholar
  36. 36.
    X. Xie, P. Shang, Z. Liu, Y. Lv, Y. Li, W. Shen, J. Phys. Chem. C 114, 2116 (2010)CrossRefGoogle Scholar
  37. 37.
    S. Zeng, K. Tang, T. Li, Z. Liang, D. Wang, Y. Wang et al., J. Phys. Chem. C 111, 10217 (2007)CrossRefGoogle Scholar
  38. 38.
    B.D. Cullity, Elements of X-ray diffraction (Addision-Wesley, Boston, 1978)Google Scholar
  39. 39.
    Sapna, N. Budhiraja, V. Kumar, S.K. Singh, J. Adv. Phys. 6, 1 (2017)CrossRefGoogle Scholar
  40. 40.
    N. Wang, H. Xu, L. Chen, X. Gu, J. Yang, Y. Qian, J. Power Sources 247, 163 (2014)CrossRefGoogle Scholar
  41. 41.
    O.M. Lemine, M. Bououdina, M. Sajieddine, A.M. Al-saie, M. Shafi, Phys. B Condens. Matter. 406, 1989 (2011)CrossRefGoogle Scholar
  42. 42.
    R. Tholkappiyan, F. Hamed, K. Vishista, Adv. Mater. Lett. 7, 971 (2016)CrossRefGoogle Scholar
  43. 43.
    H. Zhu, M. Fang, Z. Huang, Y. Liu, K. Chen, C. Tang et al., RSC Adv.(2016).  https://doi.org/10.1039/C6RA05098K Google Scholar
  44. 44.
    Z. Wang, D. Schiferl, Y. Zhao, H.S.C.O. Neill, J. Phys. Chem. Solids 64, 2517 (2003)CrossRefGoogle Scholar
  45. 45.
    M.V. Olmo, A.D. Cabello, A.A. Chacon, J.S. Benitez, E.U. Garrote et al., Phys. Chem. Chem. Phys. (2017).  https://doi.org/10.1039/C6CP08743D Google Scholar
  46. 46.
    H.C. Choi, Y.M. Jung, S.Bin Kim, Vib. Spectrosc. 37, 33 (2005)CrossRefGoogle Scholar
  47. 47.
    J.P. Singh, R.C. Srivastava, H.M. Agrawal, R. Kumar, J. Raman Spectrosc (2011).  https://doi.org/10.1002/jrs.2902 Google Scholar
  48. 48.
    L. Li, H. Bi, S. Gai, F. He, P. Gao, Y. Dai et al., Sci. Rep. (2017).  https://doi.org/10.1038/srep43116 Google Scholar
  49. 49.
    J. Kim, Y.J. Jang, J.H. Kim, J.W. Jang, S.H. Choi et al., Nanoscale, (2015).  https://doi.org/10.1039/C5NR05812K Google Scholar
  50. 50.
    M. Chkraborty, R. Thangavel, A. Biswas, G. Udayabhanu, CrystEngComm, (2016).  https://doi.org/10.1039/C5CE02553B Google Scholar
  51. 51.
    K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, et. al. Pure Appl. Chem. 57, 603 (1985)CrossRefGoogle Scholar
  52. 52.
    P.R. Matli, X. Zhou, D. Shiyu, Q. Huang, Int. Nano Lett. 5, 53 (2015)CrossRefGoogle Scholar
  53. 53.
    M. Zhu, X. Zhang, Y. Zhou, C. Zhuo, J. Huang, S. Li, RSC Adv., (2015).  https://doi.org/10.1039/C5RA00447K Google Scholar
  54. 54.
    D. Bresser, E. Paillard, R. Kloepsch, S. Krueger, M. Fiedler, R. Schmitz et al., Adv. Energy Mater. 3, 513 (2013)CrossRefGoogle Scholar
  55. 55.
    M.M. Vadiyar, S.C. Bhise, S.S. Kolekar, J.Y. Chang, K.S. Ghule et al., J. Mater. Chem. A (2016).  https://doi.org/10.1039/C6TA01893A Google Scholar
  56. 56.
    Sapna, N. Budhiraja, V. Kumar, S.K. Singh, J.Supercond. Nov. Magn. (2017).  https://doi.org/10.1007/s10948-4529-z Google Scholar
  57. 57.
    C. Yao, Q. Zeng, G.F. Goya, T. Torres, J. Liu, H. Wu et al., J. Phys. Chem. C 111, 12274 (2007)CrossRefGoogle Scholar
  58. 58.
    M. Wang, Z. Ai, L. Zhang, J. Phys. Chem. C 112, 13163 (2008)CrossRefGoogle Scholar
  59. 59.
    H. Huili, B. Grindi, A. Kouki, G. Viau, L. Ben Tahar, Ceram. Int. (2015).  https://doi.org/10.1016/j.ceramint.2015.01.024 Google Scholar
  60. 60.
    S. Bullita, A. Casu, M.F. Casula, G. Concas, F. Conjiu et al., Phy. Chem. Chem. Phy. (2014).  https://doi.org/10.1039/c3cp54291b Google Scholar
  61. 61.
    H. Huili, B. Grindi, G. Viau, L.B. Tahar, Ceram. Int. 40, 16235 (2014)CrossRefGoogle Scholar
  62. 62.
    Sapna, N. Budhiraja, V. Kumar, S.K. Singh, Ceram. Int. (2018)  https://doi.org/10.1016/j.ceramint.2018.09.286 Google Scholar
  63. 63.
    D.S. Nikam, S.V. Jadhav, V.M. Khot, R.A. Bohara, C.K. Hong et al., RSC Adv. 5, 2338 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Sapna
    • 1
  • Narender Budhiraja
    • 1
  • Vinod Kumar
    • 1
  • S. K. Singh
    • 1
  1. 1.Department of PhysicsDeenbandhu Chhotu Ram University of Science & TechnologyMurthalIndia

Personalised recommendations