Advertisement

CH3NH3PbBr3 quantum dots for visible wavelength photodetector applications

  • Sandra DiasEmail author
  • Kishan Lal Kumawat
  • S. B. Krupanidhi
Article
  • 42 Downloads

Abstract

Perovskite halide materials with their salient optoelectronic features such as high absorption coefficient, large charge carrier diffusion lengths and low carrier recombination, have revolutionised the field of photodetectors. In this paper we report the synthesis of CH3NH3PbBr3 quantum dots for visible wavelength photodetector applications. Quantum dots of size 2–4.5 nm were obtained. UV–Vis and photoluminescence spectroscopy revealed an optical band gap of 2.3 eV. An electrochemical band gap of 2.09 eV was obtained using cyclic voltammetry. CH3NH3PbBr3 quantum dots based visible wavelength photodetector device was fabricated. The time dependent photoresponse was found to be stable over several ON–OFF cycles of the lamp. We have achieved a responsivity, external quantum efficiency and specific detectivity of 6.11 A W−1, 1380.2% and 3.81 × 1012 Jones under AM 1.5 G, 1 sun illumination.

Notes

Acknowledgements

The authors would like to thank Ms. Ramya from Prof. Aveek Bid’s group (Physics Dept., IISc) for helping in the noise measurements. Also we would like to thank Mr. Debanjan Das from Prof. K.K. Nanda’s group (Materials Research Centre, IISc) for helping in the cyclic voltammetry measurements. The author Dr. Sandra Dias would like to thank the IISc Research Associate fellowship.

References

  1. 1.
    J.-J. Wang, J.-S. Hu, Y.-G. Guo, L.-J. Wan, J. Mater. Chem. 21(44), 17582–17589 (2011)CrossRefGoogle Scholar
  2. 2.
    G. Konstantatos, J. Clifford, L. Levina, E.H. Sargent, Nat. Photonics 1, 531 (2007)CrossRefGoogle Scholar
  3. 3.
    X. Xie, S.-Y. Kwok, Z. Lu, Y. Liu, Y. Cao, L. Luo, J.A. Zapien, I. Bello, C.-S. Lee, S.-T. Lee, W. Zhang, Nanoscale 4(9), 2914–2919 (2012)CrossRefGoogle Scholar
  4. 4.
    L. Dou, Y. Yang, J. You, Z. Hong, W.-H. Chang, G. Li, Nat. Commun. 5, 5404 (2014)CrossRefGoogle Scholar
  5. 5.
    F. Wang, J. Mei, Y. Wang, L. Zhang, H. Zhao, D. Zhao, ACS Appl. Mater. Interfaces 8(4), 2840–2846 (2016)CrossRefGoogle Scholar
  6. 6.
    B.R. Sutherland, A.K. Johnston, A.H. Ip, J. Xu, V. Adinolfi, P. Kanjanaboos, E.H. Sargent, ACS Photonics 2(8), 1117–1123 (2015)CrossRefGoogle Scholar
  7. 7.
    X. Hu, X. Zhang, L. Liang, J. Bao, S. Li, W. Yang, Y. Xie, Adv. Funct. Mater. 24(46), 7373–7380 (2014)CrossRefGoogle Scholar
  8. 8.
    M. Cao, J. Tian, Z. Cai, L. Peng, L. Yang, D. Wei, Appl. Phys. Lett. 109(23), 233303 (2016)CrossRefGoogle Scholar
  9. 9.
    P.A. Shaikh, D. Shi, J.R.D. Retamal, A.D. Sheikh, M.A. Haque, C.-F. Kang, J.-H. He, O.M. Bakr, T. Wu, J. Mater. Chem. C 4(35), 8304–8312 (2016)CrossRefGoogle Scholar
  10. 10.
    M.I. Saidaminov, V. Adinolfi, R. Comin, A.L. Abdelhady, W. Peng, I. Dursun, M. Yuan, S. Hoogland, E.H. Sargent, O.M. Bakr Nat. Commun. 6, 8724 (2015)CrossRefGoogle Scholar
  11. 11.
    P. Andričević, M. Kollár, X. Mettan, B. Náfrádi, A. Sienkiewicz, D. Fejes, K. Hernádi, L. Forró, E. Horváth, J. Phys. Chem. C 121(25), 13549–13556 (2017)CrossRefGoogle Scholar
  12. 12.
    L.C. Schmidt, A. Pertegás, S. González-Carrero, O. Malinkiewicz, S. Agouram, G. Mínguez Espallargas, H.J. Bolink, R.E. Galian, J. Pérez-Prieto, J. Am. Chem. Soc. 136(3), 850–853 (2014)CrossRefGoogle Scholar
  13. 13.
    W. Deng, X. Xu, X. Zhang, Y. Zhang, X. Jin, L. Wang, S.-T. Lee, J. Jie, Adv. Funct. Mater. 26(26), 4797–4802 (2016)CrossRefGoogle Scholar
  14. 14.
    P. Wang, J. Xie, K. Xiao, H. Hu, C. Cui, Y. Qiang, P. Lin, V. Arivazhagan, L. Xu, Z. Yang, Y. Yao, T. Lu, Z. Wang, X. Yu, D. Yang, ACS Appl. Mater. Interfaces 10(26), 22320–22328 (2018)CrossRefGoogle Scholar
  15. 15.
    F. Zhang, H. Zhong, C. Chen, X. Wu, X. Hu, H. Huang, J. Han, B. Zou, Y. Dong, ACS Nano 9(4), 4533–4542 (2015)CrossRefGoogle Scholar
  16. 16.
    J. Tilchin, D.N. Dirin, G.I. Maikov, A. Sashchiuk, M.V. Kovalenko, E. Lifshitz, ACS Nano 10(6), 6363–6371 (2016)CrossRefGoogle Scholar
  17. 17.
    D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P.A. Dowben, O.F. Mohammed, E.H. Sargent, O.M. Bakr, Science 347(6221), 519–522 (2015)CrossRefGoogle Scholar
  18. 18.
    Y.-H. Kim, H. Cho, J.H. Heo, T.-S. Kim, N. Myoung, C.-L. Lee, S.H. Im, T.-W. Lee, Adv. Mater. 27(7), 1248–1254 (2015)CrossRefGoogle Scholar
  19. 19.
    Y.C. Li, H.Z. Zhong, R. Li, Y. Zhou, C.H. Yang, Y.F. Li, Adv. Funct. Mater. 16(13), 1705–1716 (2006)CrossRefGoogle Scholar
  20. 20.
    T. Ueda, Z. An, K. Hirakawa, S. Komiyama, J. Appl. Phys. 103(9), 093109 (2008)CrossRefGoogle Scholar
  21. 21.
    Q. Yang, X. Guo, W. Wang, Y. Zhang, S. Xu, D.H. Lien, Z.L. Wang, ACS Nano 4(10), 6285–6291 (2010)CrossRefGoogle Scholar
  22. 22.
    X. Chen, H. Zhu, J. Cai, Z. Wu, J. Appl. Phys. 102(2), 024505 (2007)CrossRefGoogle Scholar
  23. 23.
    T. Xie, G. Liu, B. Wen, J.Y. Ha, N.V. Nguyen, A. Motayed, R. Debnath, ACS Appl. Mater. Interfaces 7(18), 9660–9667 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Materials Research CentreIndian Institute of ScienceBangaloreIndia

Personalised recommendations