Advertisement

Studies on structure, NLO properties of a new organic NLO crystal: guanidinium 3,5-dihydroxybenzoate

  • Tiezhu Pei
  • Lina Zhou
  • Qian Zhang
  • Dejia Ma
  • Yunhe Bai
  • Qiuxiang Yin
  • Chuang XieEmail author
Article
  • 11 Downloads

Abstract

A new organic nonlinear optical (NLO) crystal, guanidinium 3,5-dihydroxybenzoate (GDH), was synthesized and grown by solvent evaporation technique. The crystal structure was determined by single crystal X-ray diffraction. Noncovalent interaction analysis and molecular electrostatic potential analysis were conducted which found the structure is stabilized by strong hydrogen bond network, π–π interaction, and electrostatic interactions. The obtained GDH crystal was characterized by using FTIR, Raman, UV–Vis-NIR spectra, TG/DTA, and DSC. GDH crystal shows good transparency of about 95% in the entire NIR region. Furthermore, systematic theoretical DFT calculations at B3LYP level including HOMO–LUMO analysis, static polarizability, and hyperpolarizability density analysis were carried out. The results suggest that GDH crystal is a promising third order NLO material.

Notes

Acknowledgements

This work was financially supported by National Science Foundation of China (NSFC No. 21776204). We thank Mr. Wenlei Wu and Mr. Qi Wang from Chambroad Chemical Industry Research Institute Co., Ltd. for the useful assistance and discussion in some experiments.

Supplementary material

10854_2018_578_MOESM1_ESM.docx (594 kb)
Supplementary material 1 (DOCX 594 KB)

References

  1. 1.
    E.A.T.O.N. DF, Science 253, 281 (1991)CrossRefGoogle Scholar
  2. 2.
    L. Zhang, L. Zhou, B. Hou, Q. Yin, C. Xie, Trans. Tianjin Univ. 24, 532 (2018)CrossRefGoogle Scholar
  3. 3.
    B.F. Abrahams, M.G. Haywood, R. Robson, J. Am. Chem. Soc. 127, 816 (2005)CrossRefGoogle Scholar
  4. 4.
    J. Han, C.W. Yau, C.W. Chan, T.C.W. Mak, Cryst. Growth Des. 12, 4457 (2012)CrossRefGoogle Scholar
  5. 5.
    D. Xu, M. Jiang, Z. Tan, Acta Chim. Sin. 41, 570 (1983)Google Scholar
  6. 6.
    A.M. Petrosyan, R.P. Sukiasyan, H.A. Karapetyan, S.S. Terzyan, R.S. Feigelson, J. Cryst. Growth 213, 103 (2000)CrossRefGoogle Scholar
  7. 7.
    V. Sivashankar, R. Siddheswaran, P. Murugakoothan, Mater. Chem. Phys. 130, 323 (2011)CrossRefGoogle Scholar
  8. 8.
    X. Liu, X. Wang, X. Yin et al., Crystengcomm. 16, 930 (2013)CrossRefGoogle Scholar
  9. 9.
    A. Rajeswari, G. Vinitha, P. Murugakoothan, J. Mater. Sci.: Mater. Electron. 29, 12526 (2018)Google Scholar
  10. 10.
    S. Nandhini, K. Sudhakar, S. Muniyappan, P. Murugakoothan, Opt. Laser Technol. 105, 249 (2018)CrossRefGoogle Scholar
  11. 11.
    T. Arumanayagam, S. Ananth, P. Murugakoothan, Spectrochim. Acta A 97, 741 (2012)CrossRefGoogle Scholar
  12. 12.
    M. Drozd, D. Dudzic, Spectrochim. Acta A 89, 243 (2012)CrossRefGoogle Scholar
  13. 13.
    P.S. Pereira Silva, M.A. Pereira Goncalves, M. Ramos Silva, J.A. Paixao, Spectrochim. Acta A 172, 156 (2017)CrossRefGoogle Scholar
  14. 14.
    M. Drozd, D. Dudzic, A. Pietraszko, Spectrochim. Acta A 105, 135 (2013)CrossRefGoogle Scholar
  15. 15.
    S. Vadivel, A.B. Sultan, S.Abdul Samad, A. Shunmuganarayanan, R. Muthu, Chem. Phys. Lett. 707, 165 (2018)CrossRefGoogle Scholar
  16. 16.
    D. Sathya, V. Sivashankar, Optik 126, 5873 (2015)CrossRefGoogle Scholar
  17. 17.
    T. Arumanayagam, P. Murugakoothan, Mater. Lett. 65, 2748 (2011)CrossRefGoogle Scholar
  18. 18.
    M. Dhavamurthy, R. Raja, K.S.S. Babu, R. Mohan, Appl. Phys. A 122, 1 (2016)CrossRefGoogle Scholar
  19. 19.
    V. Siva, S.S. Kumar, A. Shameem, M. Raja, S. Athimoolam, S.A. Bahadur, J. Mater. Sci.: Mater. Electron. 28, 12484 (2017)Google Scholar
  20. 20.
    T.U. Devi, A.J. Prabha, R. Meenakshi, G. Kalpana, C.S. Dilip, J. Mol. Struct. 1130, 472 (2017)CrossRefGoogle Scholar
  21. 21.
    T. Arumanayagam, P. Murugakoothan, J. Cryst. Growth 362, 304 (2013)CrossRefGoogle Scholar
  22. 22.
    M. Drozd, J. Mol. Struct. 1155, 776 (2018)CrossRefGoogle Scholar
  23. 23.
    M. Drozd, M. Daszkiewicz, J. Mol. Struct. 1161, 383 (2018)CrossRefGoogle Scholar
  24. 24.
    T. Arumanayagam, P. Murugakoothan, Optik 123, 1153 (2012)CrossRefGoogle Scholar
  25. 25.
    A. Suvitha, P. Vivek, P. Murugakoothan, Optik 124, 3534 (2013)CrossRefGoogle Scholar
  26. 26.
    V. Sasikala, D. Sajan, K.Job Sabu, T. Arumanayagam, P. Murugakoothan, Spectrochim. Acta A 139, 555 (2015)CrossRefGoogle Scholar
  27. 27.
    G. Sheldrick, Acta Crystallogr. A 64, 112 (2008)CrossRefGoogle Scholar
  28. 28.
    G. Sheldrick, Acta Crystallogr. C 71, 3 (2015)CrossRefGoogle Scholar
  29. 29.
    G.W.T.M.J. Frisch, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian Inc. Wallingford CT, (2010)Google Scholar
  30. 30.
    S. Grimmea, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 132, 154104 (2010)CrossRefGoogle Scholar
  31. 31.
    P.J. Stephens, F.J. Devlin, C.F. Chabalowski, M.J. Frisch, J. Phys. Chem. 98, 11623 (1994)CrossRefGoogle Scholar
  32. 32.
    R. Krishnan, J.S. Binkley, R. Seeger, J.A. Pople, J. Chem. Phys. 72, 650 (1980)CrossRefGoogle Scholar
  33. 33.
    C. Timothy, C. Jayaraman, S.G.W.S.P.V. Ragué, J. Comput. Chem. 4, 294 (1983)CrossRefGoogle Scholar
  34. 34.
    THD Jr., J. Chem. Phys. 90, 1007 (1989)CrossRefGoogle Scholar
  35. 35.
    R.A. Kendall, T.H. Dunning Jr., J. Chem. Phys. 96, 6796 (1992)CrossRefGoogle Scholar
  36. 36.
    B.J. Orr, J.F. Ward, Mol. Phys. 20, 513 (1971)CrossRefGoogle Scholar
  37. 37.
    L. Tian, C. Feiwu, J. Comput. Chem. 33, 580 (2012)CrossRefGoogle Scholar
  38. 38.
    W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graph. 14, 33 (1996)CrossRefGoogle Scholar
  39. 39.
    G.R. Desiraju, J. Am. Chem. Soc. 135, 9952 (2013)CrossRefGoogle Scholar
  40. 40.
    H. Niu, L. Yu, Chem. Ind. Eng. 33, 69 (2016)Google Scholar
  41. 41.
    C. Janiak, J. Chem. Soc. Dalton Trans. 21, 3885 (2000)Google Scholar
  42. 42.
    E.R. Johnson, S. Keinan, P. Mori-Sánchez, J. Contreras-García, A.J. Cohen, W. Yang, J. Am. Chem. Soc. 132, 6498 (2010)CrossRefGoogle Scholar
  43. 43.
    T. Lu, F. Chen, J. Mol. Model. 19, 5387 (2013)CrossRefGoogle Scholar
  44. 44.
    P. Muthuraja, T. Joselin Beaula, T. Shanmugavadivu, V.Bena Jothy, M. Dhandapani, J. Mol. Struct. 1137, 649 (2017)CrossRefGoogle Scholar
  45. 45.
    W.D. Kumler, G.M. Fohlen, J. Am. Chem. Soc. 64, 1944 (1942)CrossRefGoogle Scholar
  46. 46.
    C. Adant, M. Dupuis, J.L. Bredas, Int. J. Quantum Chem. 56, 497 (1995)CrossRefGoogle Scholar
  47. 47.
    C. Cassidy, J.M. Halbout, W. Donaldson, C.L. Tang, Opt. Commun. 29, 243 (1979)CrossRefGoogle Scholar
  48. 48.
    D.P. Shelton, J.E. Rice, Chem. Rev. 94, 3 (1994)CrossRefGoogle Scholar
  49. 49.
    C. Hättig, O. Christiansen, P. Jørgensen, Chem. Phys. Lett. 282, 139 (1998)CrossRefGoogle Scholar
  50. 50.
    M. Nakano, K. Yamaguchi, T. Fueno, Chem. Phys. Lett. 185, 550 (1991)CrossRefGoogle Scholar
  51. 51.
    M. Nakano, I. Shigemoto, S. Yamada, K. Yamaguchi, J. Chem. Phys. 103, 4175 (1995)CrossRefGoogle Scholar
  52. 52.
    M. Nakano, H. Fujita, M. Takahata, K. Yamaguchi, J. Am. Chem. Soc. 124, 9648 (2002)CrossRefGoogle Scholar
  53. 53.
    S. Manzetti, T. Lu, H. Behzadi, M.D. Estrafili, H.-L. Thi, H. Le, Vach, RSC Adv. 5, 78192 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Chemical Engineering and TechnologyTianjin UniversityTianjinPeople’s Republic of China
  2. 2.National Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin)TianjinPeople’s Republic of China
  3. 3.Chambroad Chemical Industry Research Institute Co., LtdBinzhouChina

Personalised recommendations