Microstructural properties, conduction mechanism, dielectric behavior, impedance and electrical modulus of La0.6Sr0.2Na0.2MnO3 manganite

  • Raihane CharguiaEmail author
  • Sobhi Hcini
  • Michel Boudard
  • Abdessalem Dhahri


La0.6Sr0.2Na0.2MnO3 manganite was synthesized using sol–gel method. XRD pattern with Rietveld refinement indicates that sample crystallizes in the rhombohedral structure with \(R\overline{3}c\) space group. The electrical conductivity analysis shows a metal–semiconductor transition temperature at TMS = 280 K for the sample. Dielectric constants decrease with frequency and their behaviors have been investigated according to the Maxwell–Wagner theory of interfacial polarization. An appropriate electrical equivalent circuit was used to analyze the Nyquist plots, and the results show that the conduction mechanism of the synthesized manganite is mainly due to the grain boundary contribution. The modulus analysis shows the presence of electrical relaxation phenomenon and non-Debye nature for the sample. The activation energy deduced from the conductivity analysis matches very well with the values estimated from the relaxation time and the grains boundary resistances. This indicates that relaxation process and electrical conductivity are attributed to the same defect.



The author(s) gratefully acknowledge Qassim University, represented by the Deanship of Scientific Research, on the material support for this research under the number 5158-cosabu-2018-1-14-S during the academic year 2018.


  1. 1.
    S. Hcini, M. Boudard, S. Zemni, M. Oumezzine, Ceram. Int. 40, 16041 (2014)CrossRefGoogle Scholar
  2. 2.
    E. Oumezzine, S. Hcini, E.K. Hlil, E. Dhahri, M. Oumezzine, J. Alloys Compd. 615, 553 (2014)CrossRefGoogle Scholar
  3. 3.
    H.L. Tuller, J. Phys. Chem. Solids 55, 1393 (1994)CrossRefGoogle Scholar
  4. 4.
    J.Y. Park, G.M. Choi, Solid State Ion. 535, 154–155 (2002)Google Scholar
  5. 5.
    M. Nadeem, M.J. Akhtar, A.Y. Khan, R. Shaheen, M.N. Hoqu, Chem. Phys. Lett. 366, 433 (2002)CrossRefGoogle Scholar
  6. 6.
    K. Derbyshire, E. Korczynski, Solid State Technol. 38, 57 (1995)Google Scholar
  7. 7.
    A. Lisauskas, S.I. Khartsev, A. Grishin, Appl. Phys. Lett. 77, 756 (2000)CrossRefGoogle Scholar
  8. 8.
    Y. Takeda, R. Kanno, M. Noda, Y. Tomida, O. Yamamoto, J. Electrochem. Soc. 134, 2656 (1987)CrossRefGoogle Scholar
  9. 9.
    L.W. Tai, M.M. Nasrallah, H.U. Anderson, J. Solid State Chem. 118, 117 (1995)CrossRefGoogle Scholar
  10. 10.
    K. Huang, M. Feng, J.B. Goodenough, M. Schmerling, J. Electrochem. Soc. 143, 3630 (1996)CrossRefGoogle Scholar
  11. 11.
    U. Chand, K. Yadav, A. Gaur, G.D. Varma, J. Rare Earth 28, 760 (2010)CrossRefGoogle Scholar
  12. 12.
    S.B. Li, C.B. Wang, H.X. Liu, L. Li, Q. Shen, M.Z. Hu, L.M. Zhang, Mater. Res. Bull. 99, 73 (2018)CrossRefGoogle Scholar
  13. 13.
    S. Hcini, S. Zemni, A. Triki, H. Rahmouni, M. Boudard, J. Alloys Compd. 509, 1394 (2011)CrossRefGoogle Scholar
  14. 14.
    S.W. Tao, Q.Y. Wu, D.K. Peng, G.Y. Meng, J. Appl. Electrochem. 30, 153 (2000)CrossRefGoogle Scholar
  15. 15.
    G.L. Wei, J. Melnik, J.L. Luo, A.R. Sanger, K.T. Chuang, J. Electroanal. Chem. 575, 183 (2005)CrossRefGoogle Scholar
  16. 16.
    B. Zhu, I. Albinsson, B.E. Mellander, G. Meng, Solid State Ionics 125, 439 (1999)CrossRefGoogle Scholar
  17. 17.
    A. ur Rashid, S. Manzoor, J. Magn. Magn. Mater. 420, 232 (2016)CrossRefGoogle Scholar
  18. 18.
    R. Tian, J. Fan, Y. Liu, C. Xia, J. Power Sources. 185, 1247 (2008)CrossRefGoogle Scholar
  19. 19.
    A. Kotani, H. Nakajima, K. Harada, Y. Ishii, S. Mori, J. Magn. Magn. Mater. 464, 56 (2018)CrossRefGoogle Scholar
  20. 20.
    C.B. Wang, Y.J. Shen, Y.X. Zhu, L.M. Zhang, Phys. B. 461, 57 (2015)CrossRefGoogle Scholar
  21. 21.
    C. Solis, L. Navarrete, S. Roitsch, J.M. Serra, J. Mater. Chem. 22, 16051 (2012)CrossRefGoogle Scholar
  22. 22.
    A. Magrasó, M.L. Fontaine, Y. Larring, R. Bredesen, G.E. Syvertsen, H.L. Lein, T. Grande, M. Huse, R. Strandbakke, R. Haugsrud, T. Norby, Fuel Cells 11, 17 (2011)CrossRefGoogle Scholar
  23. 23.
    K.C. Lee, M.B. Choi, D.K. Lim, B. Singh, S.J. Song, J. Power Sources 232, 224 (2013)CrossRefGoogle Scholar
  24. 24.
    M.H. Ehsani, P. Kameli, F.S. Razavi, M.E. Ghazi, B. Aslibeiki. J. Alloys Compd. 579, 406 (2013)CrossRefGoogle Scholar
  25. 25.
    A. Ajan, N. Venkataramani, S. Prasad, S.N. Shringi, A.K. Nigam, R. Pinto, J. Appl. Phys. 83, 7169 (1998)CrossRefGoogle Scholar
  26. 26.
    M. Zarifi, P. Kameli, M.H. Ehsani, H. Ahmadvand, H. Salamati, J. Supercond. Nov. Magn. 30, 2683 (2017)CrossRefGoogle Scholar
  27. 27.
    A. Elghoul, A. Krichene, N.C. Boudjada, W. Boujelben. Ceram. Int. 44, 14510 (2018)CrossRefGoogle Scholar
  28. 28.
    M.P. Sharma, A. Krishnamurthy, B.K. Srivastava, S.K. Jain, A.K. Nigam, J. Phys. 20, 425220 (2008)Google Scholar
  29. 29.
    D. Varshney, N. Dodiya, M.W. Shaikh, J. Alloys Compd. 509, 7447 (2011)CrossRefGoogle Scholar
  30. 30.
    J. Vergara, R.J. Ortega-Hertogs, V. Madurga, F. Sapina, Z. El-Fadli, E. Martinez, A. Beltran, K.V. Rao, Phys. Rev. B 60, 1127 (1999)CrossRefGoogle Scholar
  31. 31.
    G.J. Owens, R.K. Singh, F. Foroutan, M. Alqaysi, C.M. Han, C. Mahapatra, H.W. Kim, J.C. Knowles, Prog. Mater Sci. 77, 1 (2016)CrossRefGoogle Scholar
  32. 32.
    H.M. Rietveld, J. Appl. Cryst. 2, 65 (1969)CrossRefGoogle Scholar
  33. 33.
    S. Hcini, M. Boudard, S. Zemni, Appl. Phys. A. 115, 985 (2014)CrossRefGoogle Scholar
  34. 34.
    M. Gaudon, C.L. Robert, F. Ansart, P. Stevens, A. Rousset, Solid State Sci. 4, 125 (2002)CrossRefGoogle Scholar
  35. 35.
    N. Dodiya, D. Varshney, J. Mol. Struct. 1031, 104 (2013)CrossRefGoogle Scholar
  36. 36.
    S. Khadhraoui, A. Triki, S. Hcini, S. Zemni, M. Oumezzine, J. Magn. Magn. Mater. 371, 69 (2014)CrossRefGoogle Scholar
  37. 37.
    S. Hcini, E. Oumezzine, M. Baazaoui, H. Rahmouni, K. Khirouni, E.K. Hlil, M. Oumezzine, Appl. Phys. A. 120, 1453 (2015)CrossRefGoogle Scholar
  38. 38.
    A. Dhahri, S. Dhahri, N. Hcini, E.K. Talbi, M. Hlil, K. Khirouni, Appl. Phys. A. 120, 247 (2015)CrossRefGoogle Scholar
  39. 39.
    H. Rahmouni, A. Dhahri, K. Khirouni, J. Alloys Compd. 591, 259 (2014)CrossRefGoogle Scholar
  40. 40.
    R. Bellouz, S. Kallel, K. Khirouni, O. Pena, M. Oumezzine, Ceram. Int. 41 (2015) 1929Google Scholar
  41. 41.
    K. Funke, Prog. Solid State Chem. 22, 111 (1993)CrossRefGoogle Scholar
  42. 42.
    G.F. Pike, Phys. Rev. B 6, 1572 (1972)CrossRefGoogle Scholar
  43. 43.
    H. Rahmouni, M. Smari, B. Cherif, E. Dhahri, K. Khirouni, Dalton Trans. 44, 10457 (2015)CrossRefGoogle Scholar
  44. 44.
    H. Rahmouni, B. Cherif, R. Jemai, A. Dhahri, K. Khirouni, J. Alloys Compd. 690, 890 (2017)CrossRefGoogle Scholar
  45. 45.
    A. Mleiki, R. Hanen, H. Rahmouni, N. Guermazi, K. Khirouni, E.K. Hlil, A. Cheikhrouhou, RSC Adv. 8, 31755 (2018)CrossRefGoogle Scholar
  46. 46.
    A. Omri, M. Bejar, E. Dhahri, M. Es-Souni, M.A. Valente, M.P.F. Graça, L.C. Costa, J. Alloys Compd. 536, 173 (2012)CrossRefGoogle Scholar
  47. 47.
    A. Kyritsis, P. Pissis, J. Grammatikakis, J. Polym, Sci. Polym. Phys. 33, 1737 (1995)CrossRefGoogle Scholar
  48. 48.
    A.K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectric Press, London, 1983)Google Scholar
  49. 49.
    A.M. Abdeen, J. Magn. Magn. Mater. 192, 121 (1999)CrossRefGoogle Scholar
  50. 50.
    S. Hcini, A. Selmi, H. Rahmouni, A. Omri, M.L. Bouazizi, Ceram. Int. 43, 2529 (2017)CrossRefGoogle Scholar
  51. 51.
    M. Hsini, N. Hamdaoui, S. Hcini, M.L. Bouazizi, S. Zemni, L. Beji, Phase Transit. 91, 316 (2018)CrossRefGoogle Scholar
  52. 52.
    X. Huang, J. Zhang, S. Xiao, G. Chen, J. Am. Ceram. Soc. 97, 1363 (2014)CrossRefGoogle Scholar
  53. 53.
    X. Huang, J. Zhang, M. Lai, T. Sang, J. Alloys Compd. 627, 367 (2015)CrossRefGoogle Scholar
  54. 54.
    A.O. Turky, M.M. Rashad, A.M. Hassan, E.M. Elnaggar, M. Bechelany, Phys. Chem. Chem. Phys. 19, 6878 (2017)CrossRefGoogle Scholar
  55. 55.
    M. Kubicek, T.M. Huber, A. Welzl, A. Penn, G.M. Rupp, J. Bernardi, M.S. Pollach, H. Hutter, J. Fleig. Solid State Ion. 256, 38 (2014)CrossRefGoogle Scholar
  56. 56.
    M. Idrees, M. Nadeem, M.M. Hassan, J. Phys. D. 43, 155401 (2010)CrossRefGoogle Scholar
  57. 57.
    H. Rahmouni, A. Selmi, K. Khirouni, N. Kallel, J. Alloys Compd. 533, 93 (2012)CrossRefGoogle Scholar
  58. 58.
    H. Rahmouni, R. Jemai, M. Nouiri, N. Kallel, F. Rzigua, A. Selmi, K. Khirouni, S. Alaya, J. Cryst. Growth 310, 556 (2008)CrossRefGoogle Scholar
  59. 59.
    D. Johnson, ZView: a Software Program for IES Analysis, Version 2.8 (Scribner Associates, Inc. Southern Pines, NC, 2008)Google Scholar
  60. 60.
    N.H. Vasoya, P.K. Jha, K.G. Saija, S.N. Dolia, K.B. Zankat, K.B. Modi, J. Electron. Mater. 45, 917 (2016)CrossRefGoogle Scholar
  61. 61.
    S. Saha, T.P. Sinha, Phys. Rev. B 65, 1341 (2005)Google Scholar
  62. 62.
    K.P. Padmasree, D.D. Kanchan, A.R. Kulkami, Solid State Ionics 177, 475 (2006)CrossRefGoogle Scholar
  63. 63.
    R. Bergman, J. Appl. Phys. 88, 1356 (2000)CrossRefGoogle Scholar
  64. 64.
    K.S. Rao, P.M. Krishna, D.M. Prasad, D. Gangadharudu, J. Mater. Sci. 42, 4801 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Raihane Charguia
    • 1
    • 2
    Email author
  • Sobhi Hcini
    • 3
  • Michel Boudard
    • 4
  • Abdessalem Dhahri
    • 5
  1. 1.Department of Physics, College of Sciences and ArtsQassim UniversityBuraydahSaudi Arabia
  2. 2.Physics Laboratory of the Condensed Matter, Faculty of Sciences, Department of PhysicsUniversity of Tunis El ManarTunisTunisia
  3. 3.Research Unit of Valorization and Optimization of Exploitation of Resources, Faculty of Science and Technology of Sidi BouzidUniversity Campus Agricultural City, University of KairouanSidi BouzidTunisia
  4. 4.LMGP, University of Grenoble Aples, CNRSGrenobleFrance
  5. 5.Laboratory of Physical Chemistry of Materials, Department of Physics, Faculty of Science of MonastirUniversity of MonastirMonastirTunisia

Personalised recommendations