Advertisement

Structural, optical and charge density analysis of Al doped ZnO Materials

  • D. Sivaganesh
  • S. SaravanakumarEmail author
  • V. Sivakumar
  • K. S. Syed Ali
  • Esther Akapo
  • Ezra Alemayehu
  • R. Rajajeyaganthan
  • R. Saravanan
Article
  • 10 Downloads

Abstract

The hexagonal structured Zn1−xAlxO (x = 0.00, 0.04, 0.06, 0.08 and 0.10) materials was synthesized by co-precipitation method. Structural, morphological and photoluminescence properties of Al doped ZnO powders were investigated by powder X-ray diffraction, scanning electron microscopy and photoluminescence characterizations, respectively. Structural analysis was done by Rietveld refinement technique. The spherical shaped morphology was observed in ZnO:Al powders. The bonding features were analyzed by using electron density distribution studies and the photoluminescence properties of Zn1−xAlxO (x = 0.00, 0.04, 0.06, 0.08 and 0.10) was also revealed.

Notes

Acknowledgements

One of author D. Sivaganesh would like to gratefully acknowledge Kalasalingam Academy of Research and Education (KARE), International Research Centre (IRC) for providing the University Research Fellowship (URF) and instrument facilities. Also authors acknowledge Science Instrumentation Centre, SFRC Sivakasi for PL measurement.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    C.F. Klingshirn, B.K. Mayer, A. Waag, A. Hoffmann, J. Gents, Zinc oxide: from fundamental properties towards novel applications (Springer, Heidelberg Dorderecht London, 2010), pp. 1–351Google Scholar
  2. 2.
    X.W. Sun, Z.J. Liu, Q.F. Chen, H.W. Lu, T. Song, C.W. Wang, Solid State Commun. 140, 219 (2006)CrossRefGoogle Scholar
  3. 3.
    A. Janotti, C.G. Walle, Rep. Prog. Phys. 72, 126501 (2009)CrossRefGoogle Scholar
  4. 4.
    M. Willander, O. Nur, Q.X. Zhao, L.L. Yang, M. Lorenz, Nanotechnology. 20, 332001 (2009)CrossRefGoogle Scholar
  5. 5.
    S.J. Pearton, D.P. Norton, Y.W. Heo, L.C. Tien, M.P. Irill, Y. Li, B.S. Kang, F. Ren, J. Kelly, A.F. Hebard, J. Electron. Mater. 35, 862 (2006)CrossRefGoogle Scholar
  6. 6.
    M. Godlewski, K. Kopalko, G. Luka, M.I. Lukasiewiez, T. Krajewski, B.S. Witowski, S. Gieraltowska, J. Low Temp. Phys. 37, 235 (2011)CrossRefGoogle Scholar
  7. 7.
    R. Murugan, T. Woods, P. Fleming, D. Sullivan, S. Ramakrishna, B.P. Ramesh, Mater. Lett. 128, 404 (2014)CrossRefGoogle Scholar
  8. 8.
    I.G. Dimitrov, A.O. Dikovska, P.A. Atanasov, T.R. Stoyanchov, T. Vasilev, J. Phys. Conf. Ser. 133, 012044 (2008)CrossRefGoogle Scholar
  9. 9.
    E. Environ, J. Huang, Q. Zheng, Environ. Sci. 4, 3861 (2011)Google Scholar
  10. 10.
    N. Srinivasan, J.C. Kannan, Mater. Sci-Pol. 33(1), 205 (2015)CrossRefGoogle Scholar
  11. 11.
    V. Gandhi, R. Ganesan, H. Hameed, A. Syedahamed, M. Thaiyan, J. Phys. Chem. 118, 9715 (2014)Google Scholar
  12. 12.
    P.K. Labhane, V.R. Huse, L.B. Patle, A.L. Chaudhari, G.H. Sonawane, J. Chem. Eng. Mater. Sci. 3, 39 (2015)Google Scholar
  13. 13.
    K. Chongsri, W. Pecharapa, Integr. Ferroelectr. 165, 159 (2015)CrossRefGoogle Scholar
  14. 14.
    L. Xu, Y. Su, Y. Chen, H. Xiao, L. Zhu, Q. Zhon, L. Sen, J. Phys. Chem. B. 110, 6637 (2006)CrossRefGoogle Scholar
  15. 15.
    R.K. Sharma, S. Patel, K.C. Pargaien, Adv. Nat. Sci.: Nanosci. Nanotechnol. 3, 035005 (2012)Google Scholar
  16. 16.
    R.S. Kumar, S.H. Dananjaya, D. Zoysa, M. Yang, RSC Adv. 6, 108468 (2016)CrossRefGoogle Scholar
  17. 17.
    S. Sakthivel, V. Baskaran, Nano Vis. 5(7–9), 283 (2015)Google Scholar
  18. 18.
    A.R. Rashid, P.S. Menon, S. Shaari, J. Nonlinear. Opt. Phys. Mater. 22(3), 1350037 (2013)CrossRefGoogle Scholar
  19. 19.
    R. Yoo, S. Cho, M. Song, W. Lee, Sens. Actuators B Chem. 221, 217 (2015)CrossRefGoogle Scholar
  20. 20.
    G. Kaur, A. Mitra, K.L. Yadav, Proc. Nat. Sci.: Mater. 25, 12 (2015)CrossRefGoogle Scholar
  21. 21.
    H. Jung, J. Hyun, S. Soo, S. Soo, G. Dae, J. Ind. Eng. Chem. 25, 199 (2014)Google Scholar
  22. 22.
    R. Mahdevi, S. Siamak, Adv. Powder Technol. 28(5), 1418 (2017)CrossRefGoogle Scholar
  23. 23.
    S. Ridhuan, Z. Lockman, A.A. Aziz, K.A. Razak, J. Mater. Sci. Forum. 846, 459 (2016)CrossRefGoogle Scholar
  24. 24.
    H. Damm, A. Kelchtermans, A. Bersha, F.V. Broeck, K. Elen, J.C. Martins, R. Carleer, J.D. Hean, C.D. Dobbelaere, J. Hadermann, T. Harlyt, M.K. Bael, RSC Adv. 3, 23745 (2013)CrossRefGoogle Scholar
  25. 25.
    International Centre of Diffraction, Data 1996 Powder Diffraction File, JCPDS File No 00-036-1451Google Scholar
  26. 26.
    A.L. Patterson, Phys. Rev. 56, 978 (1939)CrossRefGoogle Scholar
  27. 27.
    G. Srinet, R. Kumar, V. Sajal, Ceram. Int. 40, 4025 (2014)CrossRefGoogle Scholar
  28. 28.
    H.M. Rietveld, J. Appl. Crystallogr. 2, 65 (1969)CrossRefGoogle Scholar
  29. 29.
    V. Petricek, D.M. Palatinus, L. Jana, The Crystallographic Computing System (Institute of Physics, Praha, 2006)Google Scholar
  30. 30.
    D.M. Collins, Nature. 298, 49 (1982)CrossRefGoogle Scholar
  31. 31.
    N. Wu, The Maximum Entropy Method (Springer, Berlin Heidelberg, 1997), pp. (1–334)Google Scholar
  32. 32.
    R. Saravanan, Y. Ono, M. Isshiki, K. Ohmo, T. Kajitani, J. Phys. Chem. Solids 63, 51 (2003)CrossRefGoogle Scholar
  33. 33.
    K.S.S. Ali, R. Saravanan, S. Israel, M. Açlkgöz, L. Arda, Phys. B 405, 1763 (2010)CrossRefGoogle Scholar
  34. 34.
    K. Momma, T. Ikeda, A.A. Belik, F.D. Izumi, A Computer Program for Maximum-Entropy Method (MEM) Analysis and Its Performance in the MEM-Based Pattern Fitting (Cambridge University Press, Cambridge, 2013), pp. 1–10Google Scholar
  35. 35.
    K. Momma, F. Izumi, J. Appl. Crystallogr. 44, 1272–1276 (2011)CrossRefGoogle Scholar
  36. 36.
    S. Saravanakumar, U. Pal, R.J. Aranda, R. Saravanan, J. Mater. Sci. 49, 5529 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physics, International Research CentreKalasalingam Academy of Research and EducationVirudhunagarIndia
  2. 2.Department of ScienceHarmony Science AcademyDallasUSA
  3. 3.Department of ChemistryKalasalingam Academy of Research and EducationVirudhunagarIndia
  4. 4.Research Centre and Post Graduate Department of PhysicsThe Madura CollegeMaduraiIndia

Personalised recommendations