Advertisement

Structural, magnetic and impedance spectroscopy properties of Ho3+ modified BiFeO3 multiferroic thin film

  • Yilin Zhang
  • Yuhan Wang
  • Ji Qi
  • Yu Tian
  • Junkai Zhang
  • Maobin Wei
  • Yanqing Liu
  • Jinghai Yang
Article
  • 30 Downloads

Abstract

In this work, pure BiFeO3 (BFO) and Bi1−xHoxFeO3 (BHxFO, x = 0.05, 0.10, 0.15 and 0.20) thin films were satisfactorily prepared via the facile sol–gel method. We studied the evolution of the structure and morphology of Ho-doped thin films and the related diversification in magnetic and electrochemical properties. X-ray diffraction and Raman spectroscopy measurements confirmed the substitutions of Ho into Bi site and lattice distortion from rhombohedral (R3c) to orthorhombic (Pbnm) structure. Scanning electron microscopy and transmission electron microscopy results revealed an improvement of surface morphology and a decrease of average particle sizes. Magnetization measurements exhibited that the saturation magnetization (Ms) of BH0.10FO thin film (Ms = 17.05 emu/cm3) increases by approximately four times, compared to BFO thin film (Ms = 4. mu/cm3) at room temperature. The electrochemical impedance spectroscopy revealed the minimum electrical resistivity value is 1.650 × 106 Ω cm. There are numerous reports on the electrochemical properties of Ho-substituted BFO ceramics and powders. However, electrochemical properties of BHxFO thin films are rarely reported. This study provides fundamental insights of understanding the tunable ferromagnetic and electrochemical properties of Ho-doped BFO thin film.

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 51441006), the National Natural Science Foundation of China (Grant No. 51608226), the Program for the Development of Science and Technology of Jilin Province (Item No. 20150204085GX) and the Thirteenth Five-Year Program for Science and Technology of Education Department of Jilin Province (JJKH20180769KJ).

References

  1. 1.
    W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442, 759 (2006)CrossRefGoogle Scholar
  2. 2.
    S. Hussain, S.K. Hasanain, G.H. Jaffari, N.Z. Ali, M. Siddique, S.I. Shah, J. Mater. Chem. C 5, 9451 (2017)CrossRefGoogle Scholar
  3. 3.
    Y.Q. Liu, B. Zhang, Y.H. Wu, J. Zhang, D. Li, Y. Liu, M.B. Wei, J.H. Yang, Superlattice Microstruct. 61, 174 (2013)CrossRefGoogle Scholar
  4. 4.
    W.W. Mao, X.F. Wang, L. Chu, Y.Y. Zhu, Q. Wang, J. Zhang, J.P. Yang, X.A. Li, W. Huang, Phys. Chem. Chem. Phys. 18, 6399 (2016)CrossRefGoogle Scholar
  5. 5.
    Y.L. Zhang, J. Qi, Y.H. Wang, Y. Tian, J.K. Zhang, T.J. Hu, M.B. Wei, Y.Q. Liu., J.H. Yang, Ceram. Int. 44, 6054 (2017)CrossRefGoogle Scholar
  6. 6.
    K. Fujii, H. Kato, K. Omoto, M. Yashima, J. Chen, X.R. Xing, Phys. Chem. Chem. Phys. 15, 6779 (2013)CrossRefGoogle Scholar
  7. 7.
    Y.Q. Liu., Y.H. Wang, D. Li, Y.J. Zhang, J. Zhang, J.H. Yang, J. Mater. Sci.: Mater. Electron. 24, 1900 (2013)Google Scholar
  8. 8.
    Y.L. Zhang, Y.H. Wang, J. Qi, Y. Tian, M.J. Sun, J.K. Zhang, T.J. Hu, M.B. Wei, Y.Q. Liu, J.H. Yang, Nanomater. 8, 711 (2018)CrossRefGoogle Scholar
  9. 9.
    L.Y. Chang, C.S. Tu, P.Y. Chen et al., Ceram. Int. 42, 834 (2016)CrossRefGoogle Scholar
  10. 10.
    R. Das, G.G. Khan, S. Varma, G.D. Mukherjee, K. Mandal, J. Phys. Chem. C 117, 20209 (2013)CrossRefGoogle Scholar
  11. 11.
    L. Yu, H.M. Deng, W.L. Zhou, Q. Zhang, P.X. Yang, J.H. Chu, Mater. Lett. 170, 85 (2016)CrossRefGoogle Scholar
  12. 12.
    Y.L. Pei, C.L. Zhang, J. Alloy Compd. 570, 57 (2013)CrossRefGoogle Scholar
  13. 13.
    Y.Q. Liu, J. Qi, Y.L. Zhang, Y.H. Wang, M. Feng, J.K. Zhang, M.B. Wei, J.H. Yang, Appl. Surf. Sci. 427, 745 (2018)CrossRefGoogle Scholar
  14. 14.
    C. Yang, J.S. Jiang, F.Z. Qian, D.M. Jiang, C.M. Wang, W.G. Zhang, J. Alloy Compd. 507, 29 (2010)CrossRefGoogle Scholar
  15. 15.
    D.V. Karpinsky, I.O. Troyanchuk, M. Willinger, V.A. Khomchenko, A.N. Salak, V. Sikolenko, M.V. Silibin, J. Mater. Sci. 52, 9355 (2017)CrossRefGoogle Scholar
  16. 16.
    J. Qi, Y.L. Zhang, Y.H. Wang, Y.Q. Liu, M.B. Wei, J.K. Zhang, M. Feng, J.H. Yang, J. Mater. Sci.: Mater. Electron. 28, 17490 (2017)Google Scholar
  17. 17.
    A.Z. Simões, R.F. Pianno, E.C. Aguiar, E. Longo, J.A. Varela, J. Alloy Compd. 479, 274 (2009)CrossRefGoogle Scholar
  18. 18.
    T. Gholam, A. Ablat, M. Mamat, R. Wu, A. Aimidula, Phys. Lett. A 381, 2367 (2017)CrossRefGoogle Scholar
  19. 19.
    Y.Y. Zhu, C.Y. Quan, Y.H. Ma, Q. Wang, W.W. Mao, X.F. Wang, J. Zhang, Y.G. Min, J.P. Yang, X.A. Li, W. Huang, Mater. Sci. Semicond. Process. 57, 178 (2017)CrossRefGoogle Scholar
  20. 20.
    J. Liu, M.Y. Li, Z.Q. Hu, L. Pei, J. Wang, X.L. Liu, X.Z. Zhao, Appl. Phys. A 102, 713 (2011)CrossRefGoogle Scholar
  21. 21.
    D. Hong, S.W. Yu, J.R. Cheng, Curr. Appl. Phys. 11, 255 (2011)CrossRefGoogle Scholar
  22. 22.
    B. Bhushan, A. Basumallick, N.Y. Vasanthacharya, S. Kumar, D. Das, Solid State Sci. 12, 1063 (2010)CrossRefGoogle Scholar
  23. 23.
    N.V. Minh, N.G. Quan, J. Alloy Compd. 509, 2663 (2011)CrossRefGoogle Scholar
  24. 24.
    T.D. Rao, T. Karthik, A. Srinivas, S. Asthana, Solid State Commun. 152, 2071 (2012)CrossRefGoogle Scholar
  25. 25.
    Y.Q. Liu, J. Zhang, Y.H. Wu, Y.J. Zhang, M.B. Wei, J.H. Yang, J. Sol-Gel Sci. Technol. 67, 1 (2013)CrossRefGoogle Scholar
  26. 26.
    S.H. Baek, S. Choi, T.L. Kim, H.W. Jang, Curr. Appl. Phys. 17, 688 (2017)CrossRefGoogle Scholar
  27. 27.
    G. Zerihun, S. Huang, G.S. Gong, S.L. Yuan, Ceram. Int. 41, 6589 (2015)CrossRefGoogle Scholar
  28. 28.
    M.K. Singh, S. Ryu, H.M. Jang, Phys. Rev. B 72, 132101 (2005)CrossRefGoogle Scholar
  29. 29.
    A. Kumar, N.M. Murari, R.S. Katiyar, Appl. Phys. Lett. 92, 152907 (2008)CrossRefGoogle Scholar
  30. 30.
    S. Kumari, N. Ortega, A. Kumar, S.P. Pavunny, J.W. Hubbard, C. Rinaldi, G. Srinivasan, J.F. Scott, R.S. Katiyar, J. Appl. Phys. 117, 114102 (2015)CrossRefGoogle Scholar
  31. 31.
    A. Kumar, J.F. Scott, R.S. Katiyar, Phys. Rev. B 85, 224410 (2012)CrossRefGoogle Scholar
  32. 32.
    R. Palai, R.S. Katiyar, H. Schmid, P. Tissot, S.J. Clark, J. Robertson, S.A.T. Redfern, G. Catalan, J.F. Scott, Phys. Rev. B 77, 014110 (2008)CrossRefGoogle Scholar
  33. 33.
    G.L. Song, Y.C. Song, J. Su, X.H. Song, N. Zhang, T.X. Wang, F.G. Chang, J. Alloy. Compd. 696, 503 (2017)CrossRefGoogle Scholar
  34. 34.
    X.L. Wen, Z. Chen, E.H. Liu, X. Lin, C.L. Chen, J. Alloy Compd. 678, 511 (2016)CrossRefGoogle Scholar
  35. 35.
    Y. Yoneda, Y. Kitanaka, Y. Noguchi, M. Miyayama, Phys. Rev. B 86, 184122 (2012)CrossRefGoogle Scholar
  36. 36.
    Z.C. Quan, H. Hu, S. Xu, W. Liu, G.J. Fang, M.Y. Li, X.Z. Zhao, J. Sol-Gel Sci.Technol. 48, 261 (2008)CrossRefGoogle Scholar
  37. 37.
    Y.L. Liu, J. Wei, Y.X. Guo, T.T. Yang, Z. Xu, RSC Adv. 00, 1 (2016)CrossRefGoogle Scholar
  38. 38.
    M.M. Rashad, J. Mater. Sci.: Mater. Electron. 23, 882 (2012)Google Scholar
  39. 39.
    Z.J. Chai, G.Q. Tan, Z.W. Yue, W. Yang, M.Y. Guo, H.J. Ren, A. Xia, M.T. Xue, Y.Liu,L. Lv, Y. Liu, J. Alloy Compd. 746, 677 (2018)CrossRefGoogle Scholar
  40. 40.
    L.X. Zhang, J. Chen, L.L. Fan, Z. Pan, J.O. Wang, K. Ibrahim, X.R. Xing, J. Alloy Compd. 742, 351 (2018)CrossRefGoogle Scholar
  41. 41.
    Y.Q. Liu, Y.J. Wang, J. Zhang, Y.H. Wu, Y.J. Zhang, M.B. Wei, J.H. Yang, J. Mater. Sci.: Mater. Electron. 26, 1283 (2015)Google Scholar
  42. 42.
    B. Ahmmad, M.Z. Islam, A. Billah, M.A. Basith, J. Phys. D 49, 0950001 (2016)Google Scholar
  43. 43.
    C. Ederer, C.J. Fennie, J. Phys.: Condens. Matter. 20, 434219 (2008)Google Scholar
  44. 44.
    N. Ortega, A. Kumar, P. Bhattacharya, S.B. Majumder, R.S. Katiyar, Phys. Rev. B 77, 014111 (2008)CrossRefGoogle Scholar
  45. 45.
    A.K. Jonscher, J. Phys. D 32, 57 (1999)CrossRefGoogle Scholar
  46. 46.
    M.R. Islam, M.S. Islam, M.A. Zubair, H.M. Usama, M.S. Azam, A. Sharif, J. Alloy Compd. 735, 2584 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Yilin Zhang
    • 1
  • Yuhan Wang
    • 2
  • Ji Qi
    • 1
  • Yu Tian
    • 1
  • Junkai Zhang
    • 1
  • Maobin Wei
    • 1
  • Yanqing Liu
    • 1
    • 3
  • Jinghai Yang
    • 1
    • 3
  1. 1.Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of EducationJilin Normal UniversityChangchunPeople’s Republic of China
  2. 2.State Key Laboratory of Inorganic Synthesis and Preparative ChemistryJilin UniversityChangchunPeople’s Republic of China
  3. 3.Jilin Normal UniversityChangchunPeople’s Republic of China

Personalised recommendations