Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 22, pp 19308–19315 | Cite as

Synthesis and microwave absorbing properties of CeO2/multi-walled carbon nanotubes composites

  • Huan Wang
  • Honglong Xing
  • Qiangchun Liu
  • Hanxiao Jia
  • Aijuan Chen
  • Ye Liu
Article
  • 69 Downloads

Abstract

CeO2/multi-walled carbon nanotubes (CeO2/MWCNTs) composites were successfully synthesized via one-step hydrothermal method. The crystal morphology, structure and electromagnetic parameters of the composites were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, field-emission scanning electron microscopy, high-resolution transmission electron microscopy and vector network analyzer. The microwave absorption performances of CeO2/MWCNTs composites can be evaluated between 2 and 18 GHz frequency range, which is based on transmission line theory. The results demonstrated that fluorite CeO2 nanoparticles were anchored on MWCNTs. The CeO2/MWCNTs composites can reach the minimum reflection loss of − 34.64 dB at 16.24 GHz under the coating thickness of 5 mm, and the frequency bandwidth exceeding − 10 dB was 2.88 GHz. The microwave absorbing properties of the CeO2/MWCNTs composites were mainly attributed to the synergistic effect of dielectric and conductive loss, which were caused by the oxygen vacancies of CeO2. Moreover, charge polarization and interfacial polarization occurring in the composites are beneficial to microwave absorption.

Notes

Acknowledgements

This work was financially supported by the Natural Science Foundation of China (Grant 51477002) and Anhui Provincial Natural Science Fund for Colleges and Universities in (KJ2017ZD31).

References

  1. 1.
    Y.C. Yin, X.F. Liu, X.J. Wei, R.H. Yu, J.L. Shui, ACS Appl. Mater. Interfaces 8, 34686–34698 (2016)CrossRefGoogle Scholar
  2. 2.
    N. Zhou, Q.D. An, Z.Y. Xiao, S.R. Zhai, Z. Shi, RSC Adv. 7, 45156–45169 (2017)CrossRefGoogle Scholar
  3. 3.
    B. Wen, M.S. Cao, M.M. Lu, Adv. Mater. 26, 3484–3489 (2014)CrossRefGoogle Scholar
  4. 4.
    L. Li, Z.A. Hu, N. An, Y.Y. Yang, Z.M. Li, H.Y. Wu, J. Phys. Chem. C 118, 22865–22872 (2014)CrossRefGoogle Scholar
  5. 5.
    X.L. Jia, J. Wang, X. Zhu, T.H. Wang, F. Yang, W.J. Dong, G. Wang, H.T. Yang, F. Wei, J. Alloys Compd. 697, 138–146 (2017)CrossRefGoogle Scholar
  6. 6.
    Y.H. Chen, Z.H. Huang, M.M. Lu, W.Q. Cao, J. Yuan, D.Q. Zhang, M.S. Cao, J. Mater. Chem. A 3, 12621–12625 (2015)CrossRefGoogle Scholar
  7. 7.
    Z.Y. Shen, H.L. Xing, Y.T. Zhu, X.L. Ji, Z.F. Liu, L. Wang, J. Mater. Sci.: Mater. Electron. 28, 13896–13904 (2017)Google Scholar
  8. 8.
    L. Wang, H.L. Xing, S.T. Gao, X.L. Ji, Z.Y. Shen, J. Mater. Chem. C 5, 2005–2014 (2017)CrossRefGoogle Scholar
  9. 9.
    M. Zhou, X. Zhang, J.M. Wei, S.L. Zhao, L. Wang, B.X. Feng, J. Phys. Chem. C 115, 1398–1402 (2010)CrossRefGoogle Scholar
  10. 10.
    Z.J. Wang, L. Wu, J.G. Zhou, Z.H. Jiang, B.Z. Shen, Nanoscale 6, 12298–12302 (2014)CrossRefGoogle Scholar
  11. 11.
    K.C. Zhang, X.B. Gao, Q. Zhang, H. Chen, X.F. Chen, J. Magn. Magn. Mater. 452, 55–63 (2018)CrossRefGoogle Scholar
  12. 12.
    J. Roh, S.H. Hwang, J. Jang, ACS Appl. Mater. Interfaces 6, 19825–19832 (2014)CrossRefGoogle Scholar
  13. 13.
    G.R. Li, D.L. Qu, L. Arurault, Y.X. Tong, J. Phys. Chem. C 113, 1235–1241 (2009)CrossRefGoogle Scholar
  14. 14.
    F. Esch, S. Fabris, L. Zhou, T. Montini, C. Africh, P. Fornasiero, G. Comelli, R. Rosei, Science 309, 752–755 (2005)CrossRefGoogle Scholar
  15. 15.
    Z.Y. Ji, X.P. Shen, M.Z. Li, H. Zhou, G.X. Zhu, K.M. Chen, Nanotechnology 24, 115603 (2013)CrossRefGoogle Scholar
  16. 16.
    L.H. Jiang, M.G. Yao, B. Liu, Q.J. Li, R. Liu, H. Lv, S.C. Lu, C. Gong, B. Zou, T. Cui, B.B. Liu, J. Phys. Chem. C 116, 11741–11745 (2012)CrossRefGoogle Scholar
  17. 17.
    H.J. Wu, L.D. Wang, Y.M. Wang, S.L. Guo, Appl. Surf. Sci. 258, 10047–10052 (2012)CrossRefGoogle Scholar
  18. 18.
    M.S. Cao, W. Zhou, X.L. Shi, Appl. Phys. Lett. 91, 021912 (2007)CrossRefGoogle Scholar
  19. 19.
    J.M. Zhen, X. Wang, D.P. Liu, S.Y. Song, Z. Wang, Y.H. Wang, J.Q. Li, F. Wang, H.J. Zhang, Chem. Eur. J. 20, 4469–4473 (2014)CrossRefGoogle Scholar
  20. 20.
    J.Y. Bai, Z.D. Xu, Y.F. Zheng, Chem. Lett. 35, 96–97 (2005)CrossRefGoogle Scholar
  21. 21.
    Y.Q. Hou, D.M. Zhuang, G. Zhang, M.S. Wu, Vac. Sci. Technol. 24, 87–91 (2004)Google Scholar
  22. 22.
    M. Srivastava, A.K. Das, P. Khanra, M.E. Uddin, N.H. Kim, J.H. Lee, J. Mater. Chem. A 1, 9792–9801 (2013)CrossRefGoogle Scholar
  23. 23.
    R.B. Yu, L. Yan, P. Zheng, J. Chen, X.R. Xing, J. Phys. Chem. C 112, 19896–19900 (2008)CrossRefGoogle Scholar
  24. 24.
    A.E.C. Palmqvist, M. Wirde, U. Gelius, M. Muhammed, Nanostruct. Mater. 11, 995–1007 (1999)CrossRefGoogle Scholar
  25. 25.
    A. Pfau, K.D. Schierbaum, Surf. Sci. 321, 71–80 (1994)CrossRefGoogle Scholar
  26. 26.
    X.W. Liu, K.B. Zhou, L. Wang, B.Y. Wang, Y.D. Li, J. Am. Chem. Soc. 131, 3140–3141 (2009)CrossRefGoogle Scholar
  27. 27.
    N.J. Lawrence, J.R. Brewer, L. Wang, T.S. Wu, J. Wells-Kingsbury, M.M. Ihrig, G.H. Wang, Y.L. Soo, W.N. Mei, C.L. Cheung, Nano Lett. 11, 2666–2671 (2011)CrossRefGoogle Scholar
  28. 28.
    L. Wang, H.L. Xing, Z.F. Liu, Z.Y. Shen, X. Sun, G.C. Xu, RSC Adv. 6, 97142–97151 (2016)CrossRefGoogle Scholar
  29. 29.
    R.C. Che, C.Y. Zhi, C.Y. Liang, X.G. Zhou, Appl. Phys. Lett. 88, 033105 (2006)CrossRefGoogle Scholar
  30. 30.
    X.J. Zhang, G.S. Wang, W.Q. Cao, Y.Z. Wei, J.F. Liang, L. Guo, M.S. Cao, ACS Appl. Mater. Interfaces 6, 7471–7478 (2014)CrossRefGoogle Scholar
  31. 31.
    J.T. Feng, Y.C. Wang, Y.H. Hou, L.C. Li, Inorg. Chem. Front. 4, 935–945 (2017)CrossRefGoogle Scholar
  32. 32.
    X.M. Zhang, G.B. Ji, W. Liu, X.X. Zhang, Q.W. Gao, Y.C. Li, Y.W. Du, J. Mater. Chem. C 4, 1860–1870 (2016)CrossRefGoogle Scholar
  33. 33.
    B. Zhao, X.Q. Guo, W.Y. Zhao, J.S. Deng, B.B. Fan, G. Shao, Z.Y. Bai, R. Zhang, Nano Res. 10, 331–343 (2017)CrossRefGoogle Scholar
  34. 34.
    L.X. Wang, J. Zhang, Q.T. Zhang, J. Mater. Sci.: Mater. Electron. 26, 1895–1899 (2015)Google Scholar
  35. 35.
    H.J. Yang, W.Q. Cao, D.Q. Zhang, T.J. Su, H.L. Shi, W.Z. Wang, J. Yuan, M.S. Cao, ACS Appl. Mater. Interfaces 7, 7073–7077 (2015)CrossRefGoogle Scholar
  36. 36.
    L.L. Xiong, M. Yu, J.H. Liu, S.M. Li, B. Xue, RSC Adv. 7, 14733–14741 (2017)CrossRefGoogle Scholar
  37. 37.
    X. Huang, Z.J. Pu, M.N. Feng, L.F. Tong, X.B. Liu, Mater. Lett. 96, 139–142 (2013)CrossRefGoogle Scholar
  38. 38.
    X.F. Zhang, P.F. Guan, X.L. Dong, Appl. Phys. Lett. 97, 033107 (2010)CrossRefGoogle Scholar
  39. 39.
    H. Hekmatara, M. Seifi, K. Forooraghi, S. Mirzaee, Phys. Chem. Chem. Phys. 16, 24069–24075 (2014)CrossRefGoogle Scholar
  40. 40.
    L. Lin, H.L. Xing, R.W. Shu, L. Wang, X.L. Ji, D.X. Tan, Y. Gan, RSC Adv. 5, 94539–94550 (2015)CrossRefGoogle Scholar
  41. 41.
    Z.Z. Wang, H. Bi, P.H. Wang, M. Wan, Z.W. Liu, L. Shen, X.S. Liu, Phys. Chem. Chem. Phys. 17, 3796–3801 (2015)CrossRefGoogle Scholar
  42. 42.
    M.T. Qiao, X.F. Lei, Y. Ma, L.D. Tian, W.B. Wang, K.H. Su, Q.Y. Zhang, J. Alloys Compd. 693, 432–439 (2017)CrossRefGoogle Scholar
  43. 43.
    C.G. Hu, Z.Y. Mou, G.W. Lu, N. Chen, Z.L. Dong, M.J. Hu, L.T. Qu, Phys. Chem. Chem. Phys. 15, 13038–13043 (2013)CrossRefGoogle Scholar
  44. 44.
    L. Wang, X. Li, Q.Q. Li, Y.H. Zhao, R.C. Che, ACS Appl. Mater. Interfaces 10, 22602–22610 (2018)CrossRefGoogle Scholar
  45. 45.
    M.S. Cao, J. Yang, W.L. Song, D.Q. Zhang, B. Wen, H.B. Jin, Z.L. Hou, J. Yuan, ACS Appl. Mater. Interfaces 4, 6949–6956 (2012)CrossRefGoogle Scholar
  46. 46.
    T.K. Zhao, X.L. Ji, W.B. Jin, S.S. Guo, H.Y. Zhao, W.H. Yang, X.Q. Wang, et al., J. Alloys Compd. 703, 424–430 (2017)CrossRefGoogle Scholar
  47. 47.
    T.K. Zhao, X.L. Ji, W.B. Jin, C.Y. Xiong, W.X. Ma, et al., J. Alloys Compd. 708, 115–122 (2017)CrossRefGoogle Scholar
  48. 48.
    T.K. Zhao, W.B. Jin, X.L. Ji, H.B. Yan, Y.T. Jiang, et al., J. Alloys Compd. 712, 59–68 (2017)CrossRefGoogle Scholar
  49. 49.
    M.S. Cao, X.X. Wang, W.Q. Cao, X.Y. Fang, B. Wen, J. Yuan, Small 14, 1800987 (2018)CrossRefGoogle Scholar
  50. 50.
    M.M. Lu, W.Q. Cao, H.L. Shi, X.Y. Fang, J. Yang, Z.L. Hou, H.B. Jin, W.Z. Wang, J. Yuan, M.S. Cao, J. Mater. Chem. A 2, 10540–10547 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Chemical EngineeringAnhui University of Science and TechnologyHuainanPeople’s Republic of China
  2. 2.Collaborative Innovation Center of Advanced Functional CompositesHuaibei Normal UniversityHuaibeiPeople’s Republic of China

Personalised recommendations