Radiative properties of Er3+ doped and Er3+/Yb3+co-doped Sr3Al2O6 phosphors: exploring the usefulness as a phosphor material

  • Vijay SinghEmail author
  • M. Seshadri
  • N. Singh
  • M. Mohapatra


Alkaline earth metal ion based aluminates have been reported to be potential host materials for inorganic phosphors. In this context, the usability of Er doped and Er/Yb co-doped Sr3Al2O6 (SAO) samples was explored. The samples prepared via a soft combustion synthesis route showed no signs of phase separation in the XRD data. The UV–VIS-NIR absorption data suggested the stabilisation of the dopant ions in the trivalent states. The direct and indirect band gaps of the systems evaluated through the Davis-Mott analogy matched with literature values. The Urbach energy values obtained from the absorption data indicated the formation of point defects in the prepared sample. Using Judd–Ofelt methodology in correlation with the optical data, various radiative parameters, such as the intensity parameters, spectroscopic quality factor, transition probabilities, radiative lifetimes, etc. were evaluated. It was observed that in the SAO host, the metal ion was sitting at a more asymmetric site with a higher degree of covalency between the metal–ligand bond. It was further observed that in the samples, absorption of one near infrared photon resulted in the observed infrared emission. From the observed data, we discuss the radiative properties of the system in a systematic way.



This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Grant No. 2017R1D1A1B03030003).


  1. 1.
    H. Chander, Development of nanophosphors-a review. Mater. Sci. Eng. R 49, 113–155 (2005)CrossRefGoogle Scholar
  2. 2.
    M. Kumar, T.K. Seshagiri, M. Mohapatra, V. Natarajan, S.V. Godbole, Synthesis, characterization and studies of radiative properties on Eu3+-doped ZnAl2O4. J. Lumin. 132, 2810–2816 (2012)CrossRefGoogle Scholar
  3. 3.
    N. Singh, V. Singh, G. Sivaramaiah, J.L. Rao, A.K. Srivastava, P.K. Singh, M.S. Pathak, S.J. Dhoble, M. Mohapatra, EPR and optical properties of Eu2+ and Mn2+ co-doped MgSrAl10O17 blue-green light emitting powder phosphors. J. Lumin. 178, 479–486 (2016)CrossRefGoogle Scholar
  4. 4.
    R.C. Roop, Encyclopedia of the Alkaline Earth Compounds, Chap. 6—Group 13 (B, Al, Ga, In and Ti) Alkaline Earth Compounds (Elsevier, Amsterdam, 2013), pp. 481–635CrossRefGoogle Scholar
  5. 5.
    C. Feldmann, T. Justel, C.R. Ronda, P.J. Schmidt, Inorganic luminescent materials: 100 years of research and application. Adv. Funct. Mater. 13, 511–516 (2003)CrossRefGoogle Scholar
  6. 6.
    R. Estefanía, R. Hernandez, F. Rubio-Marcos, M. Ángel Rodriguez, J. Francisco, Fernandez, Long lasting phosphors: SrAl2O4:Eu, Dy as the most studied material. Renew Sust. Energ. Rev. 81, 2759–2770 (2018)CrossRefGoogle Scholar
  7. 7.
    P. Huang, C. Cui, S. Wang, Influence of calcination temperature on luminescent properties of Sr3Al2O6:Eu2+, Dy3+ phosphors prepared by sol-gel-combustion processing. Opt. Mater. 32, 184–189 (2009)CrossRefGoogle Scholar
  8. 8.
    C. Xu, D. Lu, Photoluminescence and afterglow behavior of Eu2+, Dy3+ and Eu2+, Sm3+ in Sr3Al2O6 Matrix, Adv. Mater. Res. 634–638 (2013) 2493–2497Google Scholar
  9. 9.
    S.K. Sharma, S.S. Pitale, M.M. Malik, M.S. Qureshi, R.N. Dubey, Spectral and kinetic characterization of orange-red emitting Sr3Al2O6:Eu3+/Sm3+ phosphor. J. Alloys Compd. 482, 468–475 (2009)CrossRefGoogle Scholar
  10. 10.
    Y.H. Liu, W.X. Bai, Z.R. Geng, L.B. Feng, Sr3Al2O6∶Tb3+,Yb3+ near infrared quantum clipping effect of phosphors. Chin. J. Lumin. 38, 423–429 (2017)CrossRefGoogle Scholar
  11. 11.
    B.C. Chakoumakos, G.A. Lager, J.A. Fernandez-Baca, Refinement of the structures of Sr3Al2O6 and the hydrogarnet Sr3Al2(O4D4)3 by Rietveld analysis of neutron powder diffraction data. Acta Cryst C48, 414–419 (1992)Google Scholar
  12. 12.
    V. Singh, P. Haritha, V. Venkatramu, S.H. Kim, Efficient visible upconversion luminescence in Er3+ and Er3+/Yb3+ co-doped Y2O3 phosphors obtained by solution combustion reaction. Spectrochim. Acta Part A 126, 306–311 (2014)CrossRefGoogle Scholar
  13. 13.
    M. Seshadri, L.C. Barbosa, M. Radha, Study on structural, optical and gain properties of 1.2 and 2.0 µm emission transitions in Ho3+ doped tellurite glasses. J. Non-Cryst. Solids 406, 62–72 (2014)CrossRefGoogle Scholar
  14. 14.
    F.A. Davis, N.F. Mott, Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philos. Mag. 22, 903–922 (1970)CrossRefGoogle Scholar
  15. 15.
    I. Jlassi, H. Elhouichetand, M. Ferid, Thermal and optical properties of tellurite glasses doped erbium. J. Mater. Sci. 46, 806–812 (2011)CrossRefGoogle Scholar
  16. 16.
    B.R. Judd, Optical absorption intensities of rare-earth ions. Phys. Rev. 127, 750–761 (1962)CrossRefGoogle Scholar
  17. 17.
    G.S. Ofelt, Intensities of crystal spectra of rare-earth ions. J. Chem. Phys. 37, 511–520 (1962)CrossRefGoogle Scholar
  18. 18.
    S. Alahrache, K. Al Saghir, S. Chenu, E. Veron, D.S. Meneses, A. Isabel Becerro, M. Ocana, F. Moretti, G. Patton, C. Dujardin, F. Cusso, J.P. Guin, M. Nivard, J.C. Sangleboeuf, G. Matzen, M. Allix, Perfectly transparent Sr3Al2O6 polycrystalline ceramic elaborated from glass crystallization. Chem. Mater. 25, 4017–4024 (2013)CrossRefGoogle Scholar
  19. 19.
    Y. Qian, R. Wang, C. Xu, W. Xu, X. Wu, C. Wang, Spectroscopic characteristics of 1.54 µm emission in Er/Yb:LiNbO3 crystals tridoped with In3+ ions. J. Alloys and Compd. 527, 152–156 (2012)CrossRefGoogle Scholar
  20. 20.
    M. Veg, P. Alemany, I.R. Martin, J. Lano, Structural properties, Judd-Ofelt calculations, and near infrared to visible photon up-conversion in Er3+/Yb3+ doped BaTiO3 phosphors under excitation at 1500 nm. RSC Adv. 7, 10529–10538 (2017)CrossRefGoogle Scholar
  21. 21.
    H. Liu, Y. Gao, H. Hao, G. Shi, D. Li, Y. Song, Y. Wang, X. Zhang, Judd-Ofelt analysis and temperature dependent upconversion luminescence of Er3+/Yb3+ codoped Gd2(MoO4)3 phosphor. J. Lumin. 186, 34–39 (2017)CrossRefGoogle Scholar
  22. 22.
    M. Pokhrel, G.A. Kumar, P. Samuel, K.I. Ueda, T. Yanagitani, H. Yagi, D.K. Sardar, Infrared and upconversion spectroscopic studies of high Er3+ content transparent YAG ceramic. Opt. Mater. Express 1, 1272–1285 (2011)CrossRefGoogle Scholar
  23. 23.
    Z.X. Cheng, S.J. Zhang, F. Song, H.C. Guo, J.R. Han, H.C. Chen, Optical spectroscopy of Yb/Er codoped NaY(WO4)2 crystal. J. Phys. Chem. Solids 63, 2011–2017 (2002)CrossRefGoogle Scholar
  24. 24.
    N.F. Zhuang, X.L. Hu, S.K. Gao, B. Zhao, J.L. Chen, J.Z. Chen, Spectral properties and energy transfer of Yb,Er:GdVO4 crystal. Appl. Phys. B 82, 607–613 (2006)CrossRefGoogle Scholar
  25. 25.
    M. He, T. Liu, J. Xiu, Y. Tang, Z. Zhang, Optical Transition Probabilities of Er3+ Ions in ErBa3B9O18 Crystal J. Spectrosc 3, 1–4 (2015)Google Scholar
  26. 26.
    N. Saltmarsh, G.A. Kumar, M. Kailasnath, V. Shenoy, C. Santhosh, D.K. Sardar, Spectroscopic characterizations of Er doped LaPO4 submicron phosphors prepared by homogeneous precipitation method. Opt. Mater. 53, 24–29 (2016)CrossRefGoogle Scholar
  27. 27.
    W. Zhao, L. Zhang, G. Wang, W. Zhao, L. Zhang, G. Wang, Growth, thermal and spectral characterization of Er3+-doped Li2Gd4(MoO4)7 crystal. J. Cryst. Growth 311, 2336–2340 (2009)CrossRefGoogle Scholar
  28. 28.
    A.A. Kaminskii, V.S. Mironov, A. Kornienko, S.N. Bagaev, G. Boulon, A. Brenier, B. Di Bartolo, New Laser Properties and Spectroscopy of Orthorhombic Crystals YAlO3:Er3+. Phys. Stat. Sol. A 151, 231–255 (1995)CrossRefGoogle Scholar
  29. 29.
    S.A. Payne, L.L. Chase, L.K. Smith, L. Kway, W.F. Krupke, Infrared cross—section measurements for crystals doped with Er3+, Tm3+, and Ho3+. IEEE J. Quantum Electron. 28, 2619–2630 (1992)CrossRefGoogle Scholar
  30. 30.
    A.A. Kaminskii, A.G. Petrosyan, G.A. Denisenko, T.I. Butaeva, V.A. Fedorov, S.E. Sarkisov, Spectroscopic properties and 3 µm stimulated emission of Er3+ ions in the (Yl xEr)SA15O12 and (Lul–xEr)SA15O12 garnet crystal systems. Phys. Stat. Sol. A 71, 291–312 (1982)CrossRefGoogle Scholar
  31. 31.
    I. Sokolska, Spectroscopic characterisation of LaGaO3:Er3+ crystals. Appl. Phys. B 71, 157–162 (2000)CrossRefGoogle Scholar
  32. 32.
    D.E. McCumber, Einstein relations connecting broadband emission and absorption spectra. Phys. Rev. 136, A954–A957 (1964)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Vijay Singh
    • 1
    Email author
  • M. Seshadri
    • 2
  • N. Singh
    • 1
  • M. Mohapatra
    • 3
  1. 1.Department of Chemical EngineeringKonkuk UniversitySeoulRepublic of Korea
  2. 2.Department of PhysicsFederal University of Juiz de ForaJuiz de ForaBrazil
  3. 3.Radiochemistry DivisionBhabha Atomic Research CentreMumbaiIndia

Personalised recommendations