Advertisement

Water-assisted prepared porous carbon nitride incorporated AgBr for highly efficient photocatalytic degradation of orange G under visible light

  • You-zhen DongEmail author
  • Yun-shan Xue
  • Wei-wei Yang
  • Hua-ming You
  • Yang Su
Article
  • 14 Downloads

Abstract

Carbon nitride is a commonly used photocatalyst for the degradation of organic dyes. However, the high rate of charge carrier recombination limit the photocatalytic activity. Here, a series of porous carbon nitride with AgBr nanoparticles (CN/AgBr) heterojunction are fabricated by thermal condensation of urea with the water and an in situ ion exchange approach. The porous structure of CN is beneficial to improve the photocatalytic performance and enhance the absorption of light energy, which is due to the multiple reflections of light within the macropores layered structure. And the incorporation of AgBr inhibit the charge carriers recombination due to the formation of heterojunction with CN. Furthermore, the photocatalytic activity of all samples are evaluated and display excellent activity in the degradation of orange G under visible light illumination. Among them, the CN/AgBr30 perform the most degradation efficiency, with a removal ratio of up to 92% within 10 min, which is attributed to efficient charge separation and transfer. At last, a photocatalytic mechanism is put forward and explained based on the ESR experiments, free radical and hole scavenging experiments and transient response photocurrent results.

Notes

Acknowledgements

The work was financially supported by the Natural Science Foundation of Jiangsu Province (Grants No BK20160442), University Science Research Surface Project of Jiangsu Province (Grants No 16KJB150039).

References

  1. 1.
    S.E. Hobbie, J.C. Finlay, B.D. Janke, D.A. Nidzgorski, D.B. Millet, L.A. Baker, Proc. Natl. Acad. Sci. USA 114, 4177 (2017)CrossRefGoogle Scholar
  2. 2.
    S.A. Noorhosseini, M.S. Allahyari, C.A. Damalas, S.S. Moghaddam, Sci. Total Environ. 599–600, 2019–2025 (2017)CrossRefGoogle Scholar
  3. 3.
    Y. Lu, S. Song, R. Wang, Z. Liu, J. Meng, A.J. Sweetman, A. Jenkins, R.C. Ferrier, H. Li, W. Luo, Environ. Int. 77, 5 (2015)CrossRefGoogle Scholar
  4. 4.
    F.R. Abe, J.N. Mendonça, L.A.B. Moraes, G.A.R. De Oliveira, C. Gravato, A.M.V.M. Soares, D. P. De Oliveira, Chemosphere 178, 282 (2017)CrossRefGoogle Scholar
  5. 5.
    B.K. Körbahti, J. Hazard. Mater. 145, 277 (2007)CrossRefGoogle Scholar
  6. 6.
    R. Giovannetti, E. Rommozzi, M. Zannotti, C.A.D. Amato, Catalysts 7, 305 (2017)CrossRefGoogle Scholar
  7. 7.
    M. Bilal, M. Asgher, R. Parra-Saldivar, H. Hu, W. Wang, X. Zhang, H.M.N. Iqbal, Sci. Total Environ. 576, 646 (2017)CrossRefGoogle Scholar
  8. 8.
    X. Chen, Z. Wu, D. Liu, Z. Gao, Nanoscale Res. Lett. 12, 143 (2017)CrossRefGoogle Scholar
  9. 9.
    V.K. Gupta, R. Saravanan, S. Agarwal, F. Gracia, M.M. Khan, J. Qin, R.V. Mangalaraja, J. Mol. Liq. 232, 423 (2017)CrossRefGoogle Scholar
  10. 10.
    N. Zhang, M. Zhao, C. Wang, G. Du, Afr. J. Biotechnol. 11, 6603 (2012)CrossRefGoogle Scholar
  11. 11.
    J. Jibong, P. Jongchul, J.H. Yi, J. Hazard. Mater. 168, 102 (2009)CrossRefGoogle Scholar
  12. 12.
    R.S. Blackburn, Environ. Sci. Technol. 38, 4905 (2004)CrossRefGoogle Scholar
  13. 13.
    J. Zhang, B. Yao, H. Ping, Z. Fu, Y. Li, W. Wang, H. Wang, Y. Wang, J. Zhang, F. Zhang, RSC Adv. 6, 472–480 (2016)CrossRefGoogle Scholar
  14. 14.
    C.A. Hsu, T.N. Wen, Y.C. Su, Z.B. Jiang, C.W. Chen, L.F. Shyur, Environ. Sci. Technol. 46, 5109 (2012)CrossRefGoogle Scholar
  15. 15.
    C. Nascimento, D.P. de Magalhães, M. Brandão, A.B. Santos, M. Chame, D. Baptista, M. Nishikawa, M.D. Silva, Braz. Arch. Biol. Technol. 54, 621 (2011)CrossRefGoogle Scholar
  16. 16.
    A. Özcan, M.A. Oturan, N. Oturan, Y. Sahin, J. Hazard. Mater. 163, 1213–1220 (2009)CrossRefGoogle Scholar
  17. 17.
    S.S. Vaghela, A.D. Jethva, B.B. Mehta, S.P. Dave, A. Subbarayappa Adimurthy, G. Ramachandraiah, Environ. Sci. Technol. 39, 2848 (2005)CrossRefGoogle Scholar
  18. 18.
    C.A. Martínez-Huitle, E. Brillas, Appl. Catal. B Environ. 87, 105 (2009)CrossRefGoogle Scholar
  19. 19.
    H. Safajou, H. Khojasteh, M. Salavatiniasari, S. Mortazaviderazkola, J. Colloid Interface Sci. 498, 423 (2017)CrossRefGoogle Scholar
  20. 20.
    Z. Feng, X. Lv, T. Wang, J. Porous Mat. 25, 189–198 (2017)CrossRefGoogle Scholar
  21. 21.
    D.R. Shinde, P.S. Tambade, M.G. Chaskar, K.M. Gadave, Drink. Water Eng. Sci. 10, 109 (2017)CrossRefGoogle Scholar
  22. 22.
    S.C. Yan, Z.S. Li, Z.G. Zou, Langmuir 25, 10397 (2009)CrossRefGoogle Scholar
  23. 23.
    H. Wang, B. Wang, Y. Bian, L. Dai, ACS Appl. Mater. Interface 9, 21730–21737 (2017)CrossRefGoogle Scholar
  24. 24.
    F. Ding, D. Yang, Z. Tong, Y. Nan, Y. Wang, X. Zou, Z. Jiang, F. Ding, D. Yang, Z. Tong, Environ. Sci. Nano 4, 1455 (2017)CrossRefGoogle Scholar
  25. 25.
    J. He, H. Sun, S. Indrawirawan, X. Duan, M.O. Tade, S. Wang, J. Colloid Interface Sci. 456, 15 (2015)CrossRefGoogle Scholar
  26. 26.
    Y. Dong, Q. Wang, H. Wu, Y. Chen, C.H. Lu, Y. Chi, H.H. Yang, Small 12, 5376 (2016)CrossRefGoogle Scholar
  27. 27.
    H. Wu, D. Chen, N. Li, Q. Xu, H. Li, J. He, J. Lu, Nanoscale 8, 12066 (2016)CrossRefGoogle Scholar
  28. 28.
    X. Wang, S. Feng, W. Zhao, D. Zhao, S. Chen, New J. Chem. 41, 9354 (2017)Google Scholar
  29. 29.
    H. Wang, Y. Liang, L. Liu, J. Hu, W. Cui, J. Hazard. Mater. 344, 369 (2017)CrossRefGoogle Scholar
  30. 30.
    J. Yang, X. Wu, X. Li, Y. Liu, M. Gao, X. Liu, L. Kong, S. Yang, Appl. Phys. A 105, 161 (2011)CrossRefGoogle Scholar
  31. 31.
    J. Zhang, Y. Wang, J. Jin, J. Zhang, Z. Lin, F. Huang, J. Yu, ACS Appl. Mater. Interface 5, 10317 (2013)CrossRefGoogle Scholar
  32. 32.
    W. Wang, J.C. Yu, D. Xia, P.K. Wong, Y. Li, Environ. Sci. Technol. 47, 8724 (2013)CrossRefGoogle Scholar
  33. 33.
    X. Miao, Z. Ji, J. Wu, X. Shen, J. Wang, L. Kong, M. Liu, C. Song, J. Colloid Interface Sci. 502, 24–32 (2017)CrossRefGoogle Scholar
  34. 34.
    M. Groenewolt, M. Antonietti, Adv. Mater. 17, 1789 (2010)CrossRefGoogle Scholar
  35. 35.
    Z. Wang, W. Guan, Y. Sun, F. Dong, Y. Zhou, W.K. Ho, Nanoscale 7, 2471 (2015)CrossRefGoogle Scholar
  36. 36.
    Y. Yang, W. Guo, Y. Guo, Y. Zhao, X. Yuan, Y. Guo, J. Hazard. Mater. 271, 150–159 (2014)CrossRefGoogle Scholar
  37. 37.
    D. Chen, Z. Wang, Y. Du, G. Yang, T. Ren, H. Ding, Catal. Today 258, 41 (2015)CrossRefGoogle Scholar
  38. 38.
    H. Zhu, D. Chen, N. Li, Q. Xu, H. Li, J. He, J. Lu, Appl. Catal. B Environ. 200, 594–600 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • You-zhen Dong
    • 1
    Email author
  • Yun-shan Xue
    • 1
  • Wei-wei Yang
    • 1
  • Hua-ming You
    • 1
  • Yang Su
    • 1
  1. 1.Department of Chemistry and Environmental EngineeringYancheng Teachers UniversityYanchengChina

Personalised recommendations