Vapor sensing and interface properties of reduced graphene oxide–poly(methyl methacrylate) nanocomposite

  • Zabiholah Zabihi
  • Houshang AraghiEmail author
  • Paul Eduardo David Soto Rodriguez
  • Abderrahmane Boujakhrout
  • Reynaldo Villalonga


Synthesized reduced graphene oxide–poly(methyl methacrylate) (RGO–PMMA) nanocomposites were characterized by differential scanning calorimetry, thermogravimetric analysis, and probed for volatile organic compounds (VOC) sensing. A molecular dynamics simulation is performed to investigate the interaction between PMMA and a graphene surface. The condensed-phase optimized molecular potentials for atomistic simulation studies (COMPASS), polymer consistent force-field (PCFF) and consistent valence force-field (CVFF) are used to describe the interaction of the graphene–PMMA. None of the three simulated force fields COMPASS, PCFF, and CVFF exhibits a distinctive behaviour of interaction between graphene and PMMA, but CVFF predicts a higher interaction energy in comparison with the simulated force fields COMPASS and PCFF. Experimentally, the selective response for different VOC has been analysed and the highest response together with the fastest recovery is obtained for tetrahydrofuran. A model is introduced explaining observed features.



Zabiholah Zabihi is grateful to Department of Analytical Chemistry at Universidad Complutense de Madrid for hospitality during a nine month visit, where experimental part of this work was carried out. He is grateful to the Iran Ministry of Science, Research, and Technology for a fellowship in support of this visit. P.E.D.S.R. and R.V. acknowledges Spanish Ministry of Economy and Competitiveness (Grants CTQ2014-58989-P and CTQ2015-71936-REDT).


  1. 1.
    S.M. Taylor, D. Sider, C. Hampson, S.J. Taylor, K. Wilson, S.D. Walter, J.D. Eyles, Community health effects of a petroleum refinery, Ecosyst. Health 3, 27–43 (2008)CrossRefGoogle Scholar
  2. 2.
    P. Henshaw, J. Nicell, A. Sikdar, Parameters for the assessment of odour impacts on communities. Atmos. Environ. 40, 1016–1029 (2006)CrossRefGoogle Scholar
  3. 3.
    N.M. Daud, S.R. Sheikh Abdullah, H. Abu Hasan, Z. Yaakob, Production of biodiesel and its wastewater treatment technologies: a review. Process Saf. Environ. Prot. 94, 487–508 (2014)CrossRefGoogle Scholar
  4. 4.
    L. Yan, Y. Wang, J. Li, H. Ma, H. Liu, T. Li, Y. Zhang, Comparative study of different electrochemical methods for petroleum refinery wastewater treatment. Desalination 341, 87–93 (2014)CrossRefGoogle Scholar
  5. 5.
    Y. Yavuz, A.S. Koparal, U.B. Ogutveren, Treatment of petroleum refinery wastewater by electrochemical methods. Desalination 258, 201–205 (2010)CrossRefGoogle Scholar
  6. 6.
    L. Capelli, S. Sironi, R. Barczak, M. Il Grande, R. del Rosso, Validation of a method for odor sampling on solid area sources. Water Sci. Technol. 66, 1607–1613 (2012)CrossRefGoogle Scholar
  7. 7.
    A.H. Bokowa, Review of odour legislation. Chem. Eng. Trans. 23, 31–36 (2010)Google Scholar
  8. 8.
    M. Trincavelli, S. Coradeschi, A. Loutfi, Odour classification system for continuous monitoring applications. Sens. Actuator B 139, 265–273 (2009)CrossRefGoogle Scholar
  9. 9.
    E. Ilgen, N. Karfich, K. Levsen, J. Angerer, P. Schneider, J. Heinrich, H.E. Wichmann, L. Dunemann, J. Begerow, Aromatic hydrocarbons in the atmospheric environment: Part I. Indoor versus outdoor sources, the influence of traffic. Atmos. Environ. 35, 1235–1252 (2001)CrossRefGoogle Scholar
  10. 10.
    C.Y.H. Chao, Comparison between indoor and outdoor air contaminant levels in residential buildings from passive sampler study. Build. Environ. 36, 999–1007 (2001)CrossRefGoogle Scholar
  11. 11.
    E. Righi, G. Aggazzotti, G. Fantuzzi, V. Ciccarese, G. Predieri, Air quality and well-being perception in subjects attending university libraries in Modena (Italy), Sci. Total Environ. 286, 41–50 (2002)CrossRefGoogle Scholar
  12. 12.
    A.T. Chan, Indoor–outdoor relationships of particulate matter and nitrogen oxides under different outdoor meteorological conditions. Atmos. Environ. 36, 1543–1551 (2002)CrossRefGoogle Scholar
  13. 13.
    R.H. Norman, Conductive Rubber (Maclaren, London, 1957)Google Scholar
  14. 14.
    V.E. Gul’, Structure and Properties of Conducting Polymer Composites (VSP, Utrecht, 1996)Google Scholar
  15. 15.
    F. Carmona, Conducting filled polymers. Physica A 157, 461–469 (1989)CrossRefGoogle Scholar
  16. 16.
    D.S. McLachlan, Analytical functions for the dc and ac conductivity of conductor–insulator composites. J. Electroceram. 5(2), 93–110 (2000)CrossRefGoogle Scholar
  17. 17.
    H. Lei, W.G. Pitt, L.K. McGrath, C.K. Ho, Modeling carbon black/polymer com-posite sensors. Sens. Actuators B 125, 396–407 (2007)CrossRefGoogle Scholar
  18. 18.
    L. Li, Y. Luo, Z. Li, The preparation and vapour-induced response of a conduc-tive nanocomposite based on poly(methyl acrylic acid)/expanded graphite by in situ polymerization. Smart. Mater. Struct. 16, 1570–1574 (2007)CrossRefGoogle Scholar
  19. 19.
    B. Zhang, X. Dong, W. Song, D. Wu, R. Fu, B. Zhao, M. Zhang, Electrical response and adsorption performance of novel composites from polystyrene filled with carbon aerogel in organic vapors. Sens. Actuators B 132, 60–66 (2008)CrossRefGoogle Scholar
  20. 20.
    B. Zhang, X. Dong, R. Fu, B. Zhao, M. Zhang, The sensibility of the composites fabricated from polystyrene filling multi-walled carbon nanotubes for mixed vapours. Compos. Sci. Technol. 68, 1357–1362 (2008)CrossRefGoogle Scholar
  21. 21.
    J. Lee, J. Choi, J. Hong, D. Jung, S.E. Shim, Conductive silicone/acetylene black composite films as chemical vapour sensors. Synth. Met. 160, 1030–1035 (2010)CrossRefGoogle Scholar
  22. 22.
    B. Zhang, R. Fu, M. Zhang, X. Dong, B. Zhao, L. Wang, C.U. Pitman Jr., Studies of the vapour-induced sensitivity of hybrid components fabricated by filling polystyrene with carbon black and carbon nanofibers. Composites A 37, 1884–1889 (2006)CrossRefGoogle Scholar
  23. 23.
    Y. Luo, Y. Li, Z. Li, Investigation of the vapour sensing behaviour and mechanism of a reactive hydroxyl-terminated polybutadiene liquid rubber/carbon black conductive film. Smart Mater. Struct. 15, 1979–1985 (2006)CrossRefGoogle Scholar
  24. 24.
    L. Niu, Y. Luo, Z. Li, A highly selective chemical gas sensor based on functionalization of multi-walled carbon nanotubes with poly(ethylene glycol). Sens. Actuators B 126, 361–367 (2007)CrossRefGoogle Scholar
  25. 25.
    G. Wei, H. Saitoh, F. Fujiki, T. Yamauchi, N. Tsubokawa, Grafting of branched polymers onto the surface of vapor grown carbon fiber and their electrical properties. Polym. Bull. 60, 219–228 (2008)CrossRefGoogle Scholar
  26. 26.
    M.C. Lonergan, E.J. Severin, B.J. Doleman, S.A. Beaber, R.H. Grubbs, N.S. Lewis, Array-based vapor sensing using chemically sensitive, carbon black-polymer resistors. Chem. Mater. 8, 2298–2312 (1996)CrossRefGoogle Scholar
  27. 27.
    J.E. Martin, R.A. Anderson, J. Odinek, D. Adolf, J. Williamson, Controlling percolation in field structured particle composites: observations of giant. Phys. Rev. B 67, 094207 (2003)CrossRefGoogle Scholar
  28. 28.
    B.C. Sisk, N.S. Lewis, Estimation of chemical and physical characteristics of analyte vapours through analysis of the response data of arrays of polymer-carbon black composite vapour detectors. Sens. Actuators B 96, 268–282 (2003)CrossRefGoogle Scholar
  29. 29.
    M. Belmaraes, M. Blanco, W.A. Goddard III, R.B. Ross, G. Caldwell, S.-H. Chou, J. Pham, P.M. Olofson, C. Thomas, Hildebrand and Hansen solubility parameters from molecular dynamics with applications to electronic nose polymer sensors. J. Comput. Chem. 25, 1814–1826 (2004)CrossRefGoogle Scholar
  30. 30.
    B.C. Sisk, N.S. Lewis, Comparison of analytical methods and calibration methods for correction of detector response drift in arrays of carbon black-polymer composite vapor sensors. Sens. Actuators B 104, 249–268 (2005)CrossRefGoogle Scholar
  31. 31.
    J.W. Gardner, J.A. Covington, S.-L. Tan, T.C. Pearce, Towards an artificial olfactory mucosa for improve odour classification. Proc. R. Soc. A 463, 1713–1728 (2007)CrossRefGoogle Scholar
  32. 32.
    F.K. Che Harun, J.E. Taylor, J.A. Covington, J.W. Gardner, An electronic nose employing dual-channel odour separation columns with large chemosensor arrays for advanced odour discrimination. Sens. Actuators B 141, 134–140 (2009)CrossRefGoogle Scholar
  33. 33.
    Ch. Rattanabut, W. Muangrat, M. Phonyiem, W. Bungjongpru, W. Wongwiriyapan, Y.J. Song, Hybrid graphene and poly(methyl methacrylate) for gas sensor application. Mater. Today: Proc. 4, 6397–6403 (2017)CrossRefGoogle Scholar
  34. 34.
    Ch. Rattanabut, W. Wongwiriyapan, W. Muangrat, W. Bunjongpru, M. Phonyiem, Y.J. Song, Graphene and poly (methyl methacrylate) composite laminates on flexible substrates for volatile organic compound detection. Jpn. J. Appl. Phys. 57, 04FP10 (2018)CrossRefGoogle Scholar
  35. 35.
    K. Chenoweth, A.C. van Duin, W.A. Goddard, ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation. J. Phys. Chem. A 112, 1040 (2008)CrossRefGoogle Scholar
  36. 36.
    A.C.T. van Duin, S. Dasgupta, F. Lorant, W.A. Goddard, ReaxFF: a reactive force field for hydrocarbons. J. Phys. Chem. A 105, 9396 (2001)CrossRefGoogle Scholar
  37. 37.
    A. Strachana, E. Kober, Thermal decomposition of RDX from reactive molecular dynamics. J. Chem. Phys. 122, 054502-1 (2005)Google Scholar
  38. 38.
    S.S. Han, A.C.T. van Duin, W.A. Goddard, H.M. Lee, Optimization and application of Lithium parameters for the reactive force field, ReaxFF. J. Phys. Chem. A 109, 4575 (2005)CrossRefGoogle Scholar
  39. 39.
    H. Sun, Force field for computation of conformational energies, structures, and vibrational frequencies of aromatic polyesters. J. Comput. Chem. 15, 752 (1994)CrossRefGoogle Scholar
  40. 40.
    H. Sun, COMPASS: an ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds. J. Phys. Chem. B. 102, 7338 (1998)CrossRefGoogle Scholar
  41. 41.
    H. Sun,, P. Ren, J.R. Fried, A molecular-dynamics simulation study of diffusion of a single model carbonic chain on a graphite (001) surface. Comput. Theor. Polym. Sci. 8, 229 (1988)CrossRefGoogle Scholar
  42. 42.
    H. Sun, Ab initio calculations and force field development for computer simulation of polysilanes. Macromolecules 28(3), 701 (1995)CrossRefGoogle Scholar
  43. 43.
    P. Dauber-Osguthorpe, V.A. Roberts, D.J. Osguthorpe, J. Wolff, M. Genest, A.T. Hagler, Structure and energetics of ligand binding to proteins: Escherichia coli dihydrofolate reductase-trimethoprim, a drug-receptor system. Proteins: Struct. Funct. Bioinform. 4(1), 31 (1988)CrossRefGoogle Scholar
  44. 44.
    S.J. Plimpton, fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1 (1995)CrossRefGoogle Scholar
  45. 45.
    S. Park, J. An, I. Jung, R.D. Piner, S.J. An, X. Li, et al., Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Lett. 9, 1593 (2009)CrossRefGoogle Scholar
  46. 46.
    X. Zeng, J. Yang, W. Yuan, Preparation of a poly(methylmethacrylate)-reduced graphene oxide composite with enhanced properties by a solution blending method. Eur. Polym. J. 48, 1674–1682 (2012)CrossRefGoogle Scholar
  47. 47.
    Z. Zabihi, P.E.D.S. Rodriguez, A. Boujakhrout, J.C. Viera, J.A.d.V.H. Araghi, R. Villalonga, Reduced graphene oxide–poly(methyl methacrylate) nanocomposite as a supercapacitor. J. Appl. Polym. Sci. 135(37), 46685 (2018)CrossRefGoogle Scholar
  48. 48.
    W. Muangrat, V. Yordsri, R. Maolanon, S. Pratontep, S. Porntheeraphat, W. Wongwiriyapan, Hybrid gas sensor based on platinum nanoparticles/poly(methyl methacrylate)-coated single-walled carbon nanotubes for dichloromethane detection with a high response magnitude. Diam. Relat. Mater. 65, 183–190 (2016)CrossRefGoogle Scholar
  49. 49.
    T. Alizadeh, L. Hamedsoltani, Graphene/graphite/molecularly imprinted polymer nanocomposite as the highly selective gas sensor for nitrobenzene vapor recognition. J. Environ. Chem. Eng. 2, 1514–1526 (2014)CrossRefGoogle Scholar
  50. 50.
    L. Ding, Z. Qin, Z. Dou, Y. Shen, Y. Cai, Y. Zhang, Y. Zhou, Morphology-promoted synergistic effects on the sensing properties of polyaniline ultrathin layers on reduced graphene oxide sheets for ammonia and formaldehyde detection. J. Mater. Sci. 53, 7595–7608 (2018)CrossRefGoogle Scholar
  51. 51.
    J. Xie, Q. Xue, H. Chen, A. Keller, M. Dong, Different factors’ effect on the SWNT-fluorocarbon resin interaction: a MD simulation study. Comput. Mater. Sci. 49, 148 (2010)CrossRefGoogle Scholar
  52. 52.
    E. Zaminpayma, K. Mirabbaszadeh, Interaction between single-walled carbon nanotubes and polymers: a molecular dynamics simulation study with reactive force field. Comput. Mater. Sci. 58, 7–11 (2012)CrossRefGoogle Scholar
  53. 53.
    H. Chen, Q. Xue, Q. Zheng, J. Xie, K. Yan, Influence of nanotube chirality, temperature, and chemical modification on the interfacial bonding between carbon nanotubes and polyphenylacetylene. J. Phys. Chem. C 112, 16514 (2008)CrossRefGoogle Scholar
  54. 54.
    S. Rouhi, Y. Alizadeh, R. Ansari, On the interfacial characteristics of polyethylene/single-walled carbon nanotubes using molecular dynamics simulations. Appl. Surf. Sci. 292, 958 (2014)CrossRefGoogle Scholar
  55. 55.
    T. Graves-Abe, F. Pschenitzk, H.Z. Jin, B. Bollman, J.C. Sturm, Solvent-enhanced dye diffusion in polymer thin films for polymer light-emitting diode application. J. Appl. Phys. 96, 7154 (2004)CrossRefGoogle Scholar
  56. 56.
    W.S. Bao, S.A. Meguid, Z.H. Zhu, G.J. Weng, Tunneling resistance and its effect on the electrical conductivity of carbon nanotube nanocomposites. J. Appl. Phys. 111, 093726 (2012)CrossRefGoogle Scholar
  57. 57.
    R. Rahman, P. Servati, Efficient analytical model of conductivity of CNT/polymer composites for wireless gas sensors. IEEE Trans. Nanotechnol. 14, 118–129 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Zabiholah Zabihi
    • 1
  • Houshang Araghi
    • 1
    Email author
  • Paul Eduardo David Soto Rodriguez
    • 2
  • Abderrahmane Boujakhrout
    • 2
  • Reynaldo Villalonga
    • 2
  1. 1.Department of PhysicsAmirkabir University of TechnologyTehranIran
  2. 2.Department of Analytical ChemistryUniversidad Complutense de MadridMadridSpain

Personalised recommendations