Advertisement

Facile in situ formation of high conductive Ag and CuxOy composite films: a role of aqueous spray combustion

  • Ashritha Salian
  • Pavan Pujar
  • Saumen MandalEmail author
Article
  • 101 Downloads

Abstract

In the present contribution, in situ formation of low-temperature high conductive composite films composed of pure silver and oxides of copper (CuxOy where, x = y = 1 for CuO and x = 2, y = 1 for Cu2O), are presented through spray combustion with a balanced stoichiometric redox reaction. High electrical conductivity (~ 7.8 × 105 S/cm) was retained in the composite film at an annealing temperature of 170 °C with matrix silver phase being 50% by volume. Whereas electrical conductivity of spray combustion processed pure silver is found to be ~ 2 × 106 S/cm. In situ formation of the composite film directly from the silver and cupric nitrate aqueous precursor solution through spray combustion proves it to be compositionally tunable with minimal usage of noble metal. Presence of Ag and CuxOy is confirmed by X-ray diffraction and X-ray photoelectron spectroscopy. The ratio of Cu1+/Cu2+ in the composite is found to be 0.54 and 0.43 at an annealing temperature of 170 °C and 400 °C respectively. The transformation of Cu2O to CuO is highly a thermally activated phenomenon; as the vacancy driven electrical conductivity is more in Cu2O than CuO, stabilization of Cu2O at a lower temperature is desired. The composite electrode can have potential applications in optoelectronics, printed electronics and catalysis.

Notes

Acknowledgements

This work is supported by Science and Engineering Research Board (SERB), Department of Science and Technology (DST) (Grant No. ECR/2015/000339).

Supplementary material

10854_2018_565_MOESM1_ESM.docx (2.3 mb)
Supplementary material 1 (DOCX 2330 KB)

References

  1. 1.
    R. Venkata Krishna Rao, K. Venkata Abhinav, P.S. Karthik, S.P. Singh, RSC Adv. 5, 77760 (2015)CrossRefGoogle Scholar
  2. 2.
    R.R. Søndergaard, M. Hösel, F.C. Krebs, J. Polym. Sci. 51, 16 (2012)CrossRefGoogle Scholar
  3. 3.
    R.M. Pasquarelli, D.S. Ginley, R. O’Hayre, Chem. Soc. Rev. 40, 5406 (2011)CrossRefGoogle Scholar
  4. 4.
    Y. Yan, T. Wang, X. Li, H. Pang, H. Xue, Inorg. Chem. Front. 4, 33 (2017)CrossRefGoogle Scholar
  5. 5.
    K.H.L. Zhang, K. Xi, M.G. Blamire, R.G. Egdell, J. Phys. Condens. Matter 28, 383002 (2016)CrossRefGoogle Scholar
  6. 6.
    H. Raebiger, S. Lany, A. Zunger, Phys. Rev. B 76, 045209 (2007)CrossRefGoogle Scholar
  7. 7.
    K.-Y. Chun, Y. Oh, J. Rho, J.-H. Ahn, Y.-J. Kim, H. Ryeol Choi, S. Baik, Nat. Nanotechnol. 5, 853 (2010)CrossRefGoogle Scholar
  8. 8.
    A. Kim, Y. Won, K. Woo, C.-H. Kim, J. Moon, ACS Nano 7, 1081 (2013)CrossRefGoogle Scholar
  9. 9.
    M.-G. Kim, M.G. Kanatzidis, A. Facchetti, T.J. Marks, Nat. Mater. 10, 382 (2011)CrossRefGoogle Scholar
  10. 10.
    G. Xanthopoulou, O. Thoda, S. Roslyakov, A. Steinman, D. Kovalev, E. Levashov, G. Vekinis, A. Sytschev, A. Chroneos, J. Catal. 364, 112 (2018)CrossRefGoogle Scholar
  11. 11.
    D. Majumdar, H.D. Glicksman, T.T. Kodas, Powder Technol. 110, 76 (2000)CrossRefGoogle Scholar
  12. 12.
    A. Liu, G. Liu, H. Zhu, B. Shin, E. Fortunato, R. Martins, F. Shan, J. Mater. Chem. C 4, 4478 (2016)CrossRefGoogle Scholar
  13. 13.
    Y. Li, L. Lan, P. Xiao, Z. Lin, S. Sun, W. Song, E. Song, P. Gao, P. Zhang, J. Peng, J. Mater. Chem. C 4, 2072 (2016)CrossRefGoogle Scholar
  14. 14.
    X. Yu, J. Smith, N. Zhou, L. Zeng, P. Guo, Y. Xia, A. Alvarez, S. Aghion, H. Lin, J. Yu, R.P.H. Chang, M.J. Bedzyk, R. Ferragut, T.J. Marks, A. Facchetti, Proc. Natl. Acad. Sci. USA 112, 3217 (2015)CrossRefGoogle Scholar
  15. 15.
    X. Yu, T.J. Marks, A. Facchetti, Nat. Mater. 15, 383 (2016)CrossRefGoogle Scholar
  16. 16.
    D. Sanchez-Rodriguez, J. Farjas, P. Roura, S. Ricart, N. Mestres, X. Obradors, T. Puig, J. Phys. Chem. C 117, 20133 (2013)CrossRefGoogle Scholar
  17. 17.
    E.A. Cochran, D.-H. Park, M.G. Kast, L.J. Enman, C.K. Perkins, R.H. Mansergh, D.A. Keszler, D.W. Johnson, S.W. Boettcher, Chem. Mater. 29, 9480 (2017)CrossRefGoogle Scholar
  18. 18.
    R. Branquinho, D. Salgueiro, L. Santos, P. Barquinha, L. Pereira, R. Martins, E. Fortunato, ACS Appl. Mater. Interfaces 6, 19592 (2014)CrossRefGoogle Scholar
  19. 19.
    V. Figueiredoa, E. Elangovana, G. Gonçalvesa, P. Barquinhaa, L. Pereiraa, N. Francob, E. Alvesb, R. Martinsa, E. Fortunatoa, Appl. Surf. Sci. 254, 3949 (2008)CrossRefGoogle Scholar
  20. 20.
    S. Das, T.L. Alford, J. Appl. Phys. 113, 49051 (2013)Google Scholar
  21. 21.
    I. Nakai, Y. Sugitani, K. Nagashima, J. Inorg. Nucl. Chem. 40, 789 (1978)CrossRefGoogle Scholar
  22. 22.
    T. Robert, M. Bartel, G. Offergeld, Surf. Sci. 33, 123 (1972)CrossRefGoogle Scholar
  23. 23.
    G. Deroubaix, P. Marcus, Surf. Interface Anal. 18, 39 (1992)CrossRefGoogle Scholar
  24. 24.
    P. Gaudin, P. Fioux, S. Dorge, H. Nouali, M. Vierling, E. Fiani, M. Molière, J.-F. Brilhac, J. Patarin, Fuel Process. Technol. 153, 129 (2016)CrossRefGoogle Scholar
  25. 25.
    O. Akhavan, R. Azimirad, S. Safa, E. Hasani, RSC Adv. 21, 9634 (2011)Google Scholar
  26. 26.
    K. Munawar, M.A. Mansoor, W.J. Basirun, M. Misran, N.M. Huang, M. Mazhar, RSC Adv. 7, 15885 (2017)CrossRefGoogle Scholar
  27. 27.
    M. Lashanizadega, N. Erfaninia, Korean J. Chem. Eng. 30, 2007 (2013)CrossRefGoogle Scholar
  28. 28.
    P. Pujar, R.V. Vardhan, S. Mandal, D. Gupta, Thin Solid Films 660, 267 (2018)CrossRefGoogle Scholar
  29. 29.
    Y.K. Jeong, G.M. Choi, J. Phys. Chem. Solids 57, 81 (1996)CrossRefGoogle Scholar
  30. 30.
    V.F. Gantmakher, Y.B. Levinson, A.A. Grinberg, S. Luryi, Phys. Today 41, 84 (1988)CrossRefGoogle Scholar
  31. 31.
    G.R. Suma, N.K. Subramani, S. Sachhidananda, S.V. Satyanarayana, Siddaramaiah, J. Mater. Sci. Mater. Electron. 28, 13139 (2017)CrossRefGoogle Scholar
  32. 32.
    O. Stenzel, The Physics of Thin Film Optical Spectra (Springer, Cham, 2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Metallurgical and Materials EngineeringNational Institute of Technology KarnatakaSurathkalIndia

Personalised recommendations