Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 22, pp 19287–19295 | Cite as

The effects of the PEDOT:PSS acidity on the performance and stability of P3HT:PCBM-based OSCs

  • Burak Y. Kadem
  • Mohammed Al-Hashimi
  • Ali S. Hasan
  • Raheem G. Kadhim
  • Yaqub Rahaq
  • Aseel K. Hassan
Article
  • 87 Downloads

Abstract

The optical transmittance, electrical conductivity and morphology of PEDOT:PSS treated with ammonium hydroxide (NH4OH) have been investigated. Transmittance spectra of spun PEDOT:PSS layers were enhanced slightly as a result NH4OH treatment while surface of the films has exhibited variation in the roughness and an increase in the electrical conductivity. Improvement in the physical properties of PEDOT:PSS is shown to be the key factor in enhancing the power conversion effeciency (PCE) with values as high as 4% associated with high fill factor (FF) of 57%, open circuit voltage (VOC) of 0.64 V and larger short circuit current density (JSC) of 11 mA cm−2. Stabiltiy test of the devices has been carried out over a period of 2 months, when a device incorporating PEDOT:PSS with pH ~ 4 as the hole transport layer has shown an improved stability with a degredation in PCE in about 43% whereas JSC has decreased in about 20% compared to a device incorporating pristine PEDOT:PSS with PCE decreased in about 66% and JSC in about 50% over the stated period of test. These effects have been ascribed to the increased acidity of the hole transport layer.

References

  1. 1.
    C.R. McNeill, J.J. Halls, R. Wilson, G.L. Whiting, S. Berkebile, M.G. Ramsey, R.H. Friend, N.C. Greenham, Efficient polythiophene/polyfluorene copolymer bulk heterojunction photovoltaic devices: device physics and annealing effects. Adv. Funct. Mater. 18, 2309–2321 (2008)CrossRefGoogle Scholar
  2. 2.
    B. Kadem, A. Hassan, W. Cranton, Efficient P3HT: PCBM bulk heterojunction organic solar cells; effect of post deposition thermal treatment. J. Mater. Sci.: Mater. Electron. 27, 7038–7048 (2016)Google Scholar
  3. 3.
    B. Kadem, W. Cranton, A. Hassan, Metal salt modified PEDOT:PSS as anode buffer layer and its effect on power conversion efficiency of organic solar cells. Org. Electron. 24, 73–79 (2015)CrossRefGoogle Scholar
  4. 4.
    H.Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, Y.L. Yu, Y. Wu, G. Li, Polymer solar cells with enhanced open-circuit voltage and efficiency. Nat Photonics, 3, 649. (2009)CrossRefGoogle Scholar
  5. 5.
    T.H. Meen, K.L. Chen, Y.H. Chen, W.R. Chen, D.W. Chou, W.H. Lan, C.J. Huang, The Effects of dilute sulfuric acid on sheet resistance and transmittance in poly (3, 4-thylenedioxythiophene): poly (styrenesulfonate) films. Int. J. Photoenergy (2013).  https://doi.org/10.1155/2013/843410 CrossRefGoogle Scholar
  6. 6.
    G. Greczynski, T. Kugler, M. Keil, W. Osikowicz, M. Fahlman, W.R. Salaneck, Photoelectron spectroscopy of thin films of PEDOT–PSS conjugated polymer blend: a mini-review and some new results. J. Electron Spectrosc. Relat. Phenom. 121, 1–17 (2001)CrossRefGoogle Scholar
  7. 7.
    K.W. Wong, H.L. Yip, Y. Luo, K.Y. Wong, W.M. Lau, K.H. Low, H.F. Chow, Z.Q. Gao, W.L. Yeumg, C.C. Chang, Blocking reactions between indium-tin oxide and poly (3, 4-ethylene dioxythiophene): poly (styrene sulphonate) with a self-assembly monolayer. Appl. Phys. Lett. 80, 2788–2790 (2002)CrossRefGoogle Scholar
  8. 8.
    A.M. Nardes, M. Kemerink, M.M. de Kok, E. Vinken, K. Maturova, R.A.J. Janssen, Conductivity, work function, and environmental stability of PEDOT:PSS thin films treated with sorbitol. Org. Electron. 9, 727–734 (2008)CrossRefGoogle Scholar
  9. 9.
    A. Savva, M. Neophytou, C. Koutsides, K. Kalli, S.A. Choulis, Synergistic effects of buffer layer processing additives for enhanced hole carrier selectivity in inverted organic photovoltaics. Org. Electron. 14, 3123–3130 (2013)CrossRefGoogle Scholar
  10. 10.
    A. Savva, E. Georgiou, G. Papazoglou, A.Z. Chrusou, K. Kapnisis, S.A. Choulis, Photovoltaic analysis of the effects of PEDOT:PSS-additives hole selective contacts on the efficiency and lifetime performance of inverted organic solar cells. Sol. Energy Mater. Sol. Cells, 132, 507–514 (2015)CrossRefGoogle Scholar
  11. 11.
    J.S. Huang, P.F. Miller, J.S. Wilson, A.J. de Mello, J.C. de Mello, D.D.C. Bradley, Investigation of the effects of doping and post-deposition treatments on the conductivity, morphology, and work function of poly (3, 4-ethylenedioxythiophene)/poly (styrene sulfonate) films. Adv. Func. Mater. 15, 290–296 (2005)CrossRefGoogle Scholar
  12. 12.
    T.P. Nguyen, S.A. de Vos, An investigation into the effect of chemical and thermal treatments on the structural changes of poly (3, 4ethylenedioxythiophene)/ polystyrenesulfonate and consequences on its use on indium tin oxide substrates. Appl. Surf. Sci. 221, 330–339 (2004)CrossRefGoogle Scholar
  13. 13.
    T.C. Tsai, H.C. Chang, C.H. Chen, Y.C. Huang, W.T. Whang, A facile dedoping approach for effectively tuning thermoelectricity and acidity of PEDOT:PSS films. Org. Electron. 15, 641–645 (2014)CrossRefGoogle Scholar
  14. 14.
    Y. Kim, A.M. Ballantyne, J. Nelson, D.D.C. Bradley, Effects of thickness and thermal annealing of the PEDOT:PSS layer on the performance of polymer solar cells. Org. Electron. 10, 205–209 (2009)CrossRefGoogle Scholar
  15. 15.
    H.K. Lee, J.-K. Kim, O.O. Park, Effects of UV light-irradiated buffer layer on the performance of polymer solar cells. Org. Electron. 10, 1641–1644 (2009)CrossRefGoogle Scholar
  16. 16.
    T. Nagata, S. Oha, T. Chikyow, Y. Wakayama, Effect of UV–ozone treatment on electrical properties of PEDOT:PSS film. Org. Electron. 12, 279–284 (2012)CrossRefGoogle Scholar
  17. 17.
    H. Kim, J. Park, S. Lee, C.-S. Ha, Y. Kim, Effect of strong base addition to hole-collecting buffer layer in polymer solar cells. Sol. Energy Mater. Sol. Cells 95, 349–351 (2011)CrossRefGoogle Scholar
  18. 18.
    F.L. Zhang, A. Gadisa, O. Inganäs, M. Svensson, M.R. Andersson, Influence of buffer layers on the performance of polymer solar cells. Appl. Phys. Lett. 84, 3906–3908 (2004)CrossRefGoogle Scholar
  19. 19.
    C.-J. Ko, Y.-K. Lin, F.-C. Chen, C.-W. Chu, Modified buffer layers for polymer photovoltaic devices. Appl. Phys. Lett. 90, 063509 (2007)CrossRefGoogle Scholar
  20. 20.
    T. Xiao, W. Cui, J. Anderegg, J. Shinar, R. Shinar, Simple routes for improving polythiophene: fullerene-based organic solar cells. Org. Electron. 12, 257–262 (2011)CrossRefGoogle Scholar
  21. 21.
    M.Y. Ameen, P. Shamjid, T. Abhijith, T. Radhakrishnan, V.S. Reddy, Stability enhancement of P3HT: PCBM polymer solar cells using thermally evaporated MoO3 anode buffer layer. Phys. B: Phys. Condens. Matter 530, 201–207 (2018)CrossRefGoogle Scholar
  22. 22.
    M.M. De Kok, M. Buechel, S.I.E. Vulto, P. Van de Weijer, E.A. Meulenkamp, S.H.P.M. De Winter, A.J.G. Mank, H.J.M. Vorstenbosch, C.H.L. Weijtens, V. Van Elsbergen, Modification of PEDOT:PSS as hole injection layer in polymer LEDs. Phys. Status Solidi (a) 201, 1342–1359 (2004)CrossRefGoogle Scholar
  23. 23.
    C.K. Cho, W.J. Hwang, K. Eun, S.H. Choa, S.I. Na, H.K. Kim, Mechanical flexibility of transparent PEDOT:PSS electrodes prepared by gravure printing for flexible organic solar cells. Sol. Energy Mater. Sol. Cells 95, 3269–3275 (2011)CrossRefGoogle Scholar
  24. 24.
    B. Kadem, A. Hassan, W. Cranton, The effects of organic solvents and their co-solvents on the optical, structural, morphological of P3HT:PCBM organic solar cells. AIP Conf. Proc. 1758(1), 020006. (2016)CrossRefGoogle Scholar
  25. 25.
    R. Bkakri, O.E. Kusmartseva, F.V. Kusmartsev, M. Song, A. Bouazizi, Degree of phase separation effects on the charge transfer properties of P3HT: graphene nanocomposites. J. Lumin. 161, 264–270 (2015)CrossRefGoogle Scholar
  26. 26.
    X. Wu, L. Lian, S. Yang, G. He, Highly conductive PEDOT:PSS and graphene oxide hybrid film from a dipping treatment with hydroiodic acid for organic light emitting diodes. J. Mater. Chem. C 4, 8528–8534 (2016)CrossRefGoogle Scholar
  27. 27.
    L. Skjolding, C. Spegel, A. Ribayrol, J. Emneus, L. Montelius, Characterisation of nano-interdigitated electrodes. J. Phys: Conf. Ser. 100(5), 052045. (2008)Google Scholar
  28. 28.
    J. Ouyang, Q. Xu, C.W. Chu, Y. Yang, G. Li, J. Shinar, On the mechanism of conductivity enhancement in poly (3, 4-ethylenedioxythiophene): poly (styrene sulfonate) film through solvent treatment. Polymer 45, 8443–8450 (2004)CrossRefGoogle Scholar
  29. 29.
    Z. Xu, L.M. Chen, G. Yang, C.H. Huang, J. Hou, Y. Wu, G. Li, C.S. Hsu, Y. Yang, Vertical phase separation in Poly (3-hexylthiophene): fullerene derivative blends and its advantage for inverted structure solar cells. Adv. Func. Mater. 19, 1227–1234 (2009)CrossRefGoogle Scholar
  30. 30.
    G. Yue, J. Wu, Y. Xiao, H. Ye, J. Lin, M. Huang, Flexible dye-sensitized solar cell based on PCBM/P3HT heterojunction. Chin. Sci. Bull. 56, 325–330 (2011)CrossRefGoogle Scholar
  31. 31.
    H. Li, Z.G. Zhang, Y. Li, J. Wang, Tunable open-circuit voltage in ternary organic solar cells. Appl. Phys. Lett. 101, 163302 (2012)CrossRefGoogle Scholar
  32. 32.
    M.G. Murali, A.D. Rao, S. Yadav, P.C. Ramamurthy, Narrow band gap conjugated polymer for improving the photovoltaic performance of P3HT: PCBM ternary blend bulk heterojunction solar cells. Polym. Chem. 6, 962–972 (2015)CrossRefGoogle Scholar
  33. 33.
    N. Grossiord, J.M. Kroon, R. Andriessen, P.W. Blom, Degradation mechanisms in organic photovoltaic devices. Org. Electron. 13, 432–456 (2012)CrossRefGoogle Scholar
  34. 34.
    J. Zhao, A. Swinnen, G. Van Assche, J. Manca, D. Vanderzande, B.V. Mele, Phase diagram of P3HT/PCBM blends and its implication for the stability of morphology. J. Phys. Chem. B 113, 1587–1591 (2009)CrossRefGoogle Scholar
  35. 35.
    B. Zimmermann, U. Würfel, M. Niggemann, Longterm stability of efficient inverted P3HT: PCBM solar cells. Sol. Energy Mater. Sol. Cells 93, 491–496 (2009)CrossRefGoogle Scholar
  36. 36.
    M.O. Reese, A.J. Morfa, M.S. White, N. Kopidakis, S.E. Shaheen, G. Rumbles, D.S. Ginley, Pathways for the degradation of organic photovoltaic P3HT:PCBM based devices. Sol. Energy Mater. Sol. Cells 92, 746–752 (2008)CrossRefGoogle Scholar
  37. 37.
    B. Friedel, P.E. Keivanidis, T.J. Brenner, A. Abrusci, C.R. McNeill, R.H. Friend, N.C. Greenham, Effects of layer thickness and annealing of PEDOT:PSS layers in organic photodetectors. Macromolecules 42, 6741–6747 (2009)CrossRefGoogle Scholar
  38. 38.
    M.T. Lloyd, D.C. Olson, P. Lu, E. Fang, D.L. Moore, M.S. White, M.O. Reese, D.S. Ginley, J.W. Hsu, Impact of contact evolution on the shelf life of organic solar cells. J. Mater. Chem. 19, 76387642 (2009)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Physics Department, College of ScienceUniversity of BabylonHillahIraq
  2. 2.Department of MathematicsMissan UniversityAmarahIraq
  3. 3.Department of Engineering of Polymer and Petrochemical IndustriesUniversity of BabylonHillahIraq
  4. 4.Material and Engineering Research InstituteSheffield Hallam UniversitySheffieldUK

Personalised recommendations