Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 22, pp 19278–19286 | Cite as

Enhanced photoelectrochemical performance by doping Mo into BiVO4 lattice

  • Linmeng Wang
  • Xiuquan Gu
  • Yulong Zhao
  • Meng Wei
  • Yinghuai Qiang
  • Yun Zhao
Article
  • 79 Downloads

Abstract

The Mo-doped BiVO4 (m-BiVO4) thin films were deposited onto transparent conducting substrates via a facile metallic organic deposition method. The effect of nominal Mo doping contents on the photoelectrochemical (PEC) performance was investigated. By terms of the electrochemical impedance spectra and Mott–Schottky results, the best PEC performance appeared in the 5 and 10 at% Mo-doped BiVO4 samples was attributed to a lowering of charge transfer resistance occurred at the electrode/electrolyte interface. Moreover, a self-powered Mo:BiVO4 PEC biosensor was fabricated for detecting the glutathione (GSH), which demonstrated a rapid response, a wide detection range 5–1000 µmol/L (µM), a ultralow detect limit of 59 nM, and a sensitivity of 835 A/cm2/mM−1.

Notes

Acknowledgements

This work is financially supported by the Fundamental Research Funds for the Central Universities (2015XKMS037).

Supplementary material

10854_2018_54_MOESM1_ESM.doc (2.2 mb)
Supplementary material 1 (DOC 2243 KB)

References

  1. 1.
    L. Zhou, W. Wang, S. Liu, L. Zhang, H. Xu, J. Mol. Catal. A Chem. 252, 120 (2006)CrossRefGoogle Scholar
  2. 2.
    X. Zhang, X. Quan, S. Chen, Y. Zhang, J. Hazard. Mater. 177, 914 (2010)CrossRefGoogle Scholar
  3. 3.
    S. Ho-Kimura, S.J.A. Moniz, A.D. Handoko, J. Tang, J. Mater. Chem. A 2, 3948 (2014)CrossRefGoogle Scholar
  4. 4.
    S.J.A. Moniz, J. Zhu, J. Tang, Adv. Energy Mater. 4, 1301590 (2014)CrossRefGoogle Scholar
  5. 5.
    Y. Ma, F.L. Formal, A. Kafizas, S.R. Pendlebury, J.R. Durrant, J. Mater. Chem. A 3, 20649 (2015)CrossRefGoogle Scholar
  6. 6.
    J. Su, T. Zhang, L. Wang, J. Mater. Sci. Mater. Electron. 28, 4481 (2017)CrossRefGoogle Scholar
  7. 7.
    B.M.R.U. Dowla, J.Y. Cho, W.K. Jang, W. Oh, J. Mater. Sci. Mater. Electron. 28, 15106 (2017)CrossRefGoogle Scholar
  8. 8.
    C. Regmi, Y.K. Kshetri, T. Kim, R.P. Pandey, S.K. Ray, S.W. Lee, Appl. Surf. Sci. 413, 253 (2017)CrossRefGoogle Scholar
  9. 9.
    C. Regmi, Y.K. Kshetri, S.K. Ray, R.P. Pandey, S.W. Lee, Appl. Surf. Sci. 392, 61 (2017)CrossRefGoogle Scholar
  10. 10.
    J. Li, J. Zhou, H. Hao, W. Li, Appl. Surf. Sci. 399, 1 (2017)CrossRefGoogle Scholar
  11. 11.
    C. Wu, Y. Fang, A.H. Tirusew, M. Xiang, Y. Huang, C. Chen, Chin. J. Catal. 38, 192 (2017)CrossRefGoogle Scholar
  12. 12.
    R.A. He, S.W. Cao, J.G. Yu, Acta Phys. Chim. Sin. 32, 2841 (2016)Google Scholar
  13. 13.
    H.S. Park, K.E. Kweon, H. Ye, E. Paek, G.S. Hwang, A.J. Bard, J. Phys. Chem. C 115, 17870 (2011)CrossRefGoogle Scholar
  14. 14.
    R.P. Antony, M. Zhang, K. Zhou, S.C.J. Loo, J. Barber, L.H. Wong, ACS Omega 3, 2724 (2018)CrossRefGoogle Scholar
  15. 15.
    R.P. Antony, P.S. Bassi, F.F. Abdi, S.Y. Chiam, Y. Ren, J. Barber, J.S.C. Loo, L.H. Wong, Electrochim. Acta 211, 173 (2016)CrossRefGoogle Scholar
  16. 16.
    F.F. Abdi, L. Han, A.H.M. Smets, M. Zeman, B. Dam, R. van de Krol, Nat. Commun. 4, 2195 (2013)CrossRefGoogle Scholar
  17. 17.
    S. Byun, B. Kim, S. Jeon, B. Shin, J. Mater. Chem. A 5, 6905 (2017)CrossRefGoogle Scholar
  18. 18.
    J.H. Kim, Y. Jo, J.H. Kim, J.W. Jang, H.J. Kang, Y.H. Lee, D.S. Kim, J.S. Lee, ACS Nano 9, 11820 (2015)CrossRefGoogle Scholar
  19. 19.
    H.S. Han, S. Shin, D.H. Kim, I.J. Park, J.S. Kim, P.-S. Huang, J.-K. Lee, I.S. Cho, X. Zheng, Energy Environ. Sci. 11, 1299 (2018)CrossRefGoogle Scholar
  20. 20.
    X.F. Zhang, B.Y. Zhang, K. Cao, J. Brillet, J.Y. Chen, M.K. Wang, Y. Shen, J. Mater. Chem. A 3, 21630 (2015)CrossRefGoogle Scholar
  21. 21.
    Y. Kuang, Q. Jia, H. Nishiyama, T. Tamada, A. Kudo, K. Domen, Adv. Energy Mater. 6, 1501645 (2016)CrossRefGoogle Scholar
  22. 22.
    D. Eisenberg, H.S. Ahn, A.J. Bard, J. Am. Chem. Soc. 136, 14011 (2014)CrossRefGoogle Scholar
  23. 23.
    P. Bornoz, F.F. Abdi, S.D. Tilley, B. Da, R. van De Krol, M. Graetzel, K. Sivula, J. Phys. Chem. C 118, 16959 (2014)CrossRefGoogle Scholar
  24. 24.
    M. Li, L. Zhao, L. Guo, Int. J. Hydrogen Energy 35, 7127 (2010)CrossRefGoogle Scholar
  25. 25.
    P.J. Boddy, J. Electrochem. Soc. 115, 199 (1968)CrossRefGoogle Scholar
  26. 26.
    A. Fujishima, K. Honda, Nature 238, 37 (1972)CrossRefGoogle Scholar
  27. 27.
    Z. Kang, Y.S. Gu, X.Q. Yan, Z.M. Bai, Y.H. Liu, S. Liu, X.H. Zhang, Z. Zhang, X.J. Zhang, Y. Zhang, Biosen. Bioelectron. 64, 499 (2015)CrossRefGoogle Scholar
  28. 28.
    K. Zhao, X. Yan, Y. Gu, Z. Kang, Z. Bai, S. Cao, Y. Liu, X. Zhang, Y. Zhang, Small 12, 245 (2016)CrossRefGoogle Scholar
  29. 29.
    Z. Kang, X.Q. Yan, Y. Wang, Y. Zhao, Z. Bai, Y.C. Liu, K. Zhao, S.Y. Cao, Y. Zhang, Nano Res. 9, 344 (2016)CrossRefGoogle Scholar
  30. 30.
    J. Tang, B. Kong, Y.C. Wang, M. Xu, Y.L. Wang, H. Wu, G.F. Zheng, Nano Lett. 13, 5350 (2013)CrossRefGoogle Scholar
  31. 31.
    R.P. Antony, T. Baikie, S.Y. Chiam, Y. Ren, R.R. Prabhakar, S.K. Batabyal, J.S.C. Loo, J. Barber, L.H. Wong, Appl. Catal. A Gen. 526, 21 (2016)CrossRefGoogle Scholar
  32. 32.
    Y. Park, K.J. McDonald, K. Choi, Chem. Soc. Rev. 42, 2321 (2013)CrossRefGoogle Scholar
  33. 33.
    S. Obregón, S.W. Lee, G. Colón, Dalton Trans. 43, 311 (2014)CrossRefGoogle Scholar
  34. 34.
    D. Zhou, L.X. Pang, J. Guo, Z.M. Qi, T. Shao, X. Yao, C.A. Randall, J. Mater. Chem. 22, 21412 (2012)CrossRefGoogle Scholar
  35. 35.
    S. Obregón, G. Colón, Catal. Sci. Technol. 4, 2042 (2014)CrossRefGoogle Scholar
  36. 36.
    D. Zhou, W.B. Li, L.X. Pang, J. Guo, Z.M. Qi, T. Shao, X. Yao, C.A. Randall, Dalton Trans. 43, 7290 (2014)CrossRefGoogle Scholar
  37. 37.
    S. Usai, S. Obregón, A.I. Becerro, G. Colón, J. Phys. Chem. C 117, 24479 (2013)CrossRefGoogle Scholar
  38. 38.
    M. Valant, D. Suvorov, J. Am. Ceram. Soc. 83, 2721 (2000)CrossRefGoogle Scholar
  39. 39.
    E. Burstein, Phys. Rev. Lett. 93, 632 (1954)Google Scholar
  40. 40.
    M. Rohloff, B. Anke, S. Zhang, U. Gernert, C. Scheu, M. Lerch, A. Fischer, Sustain. Energy Fuels 1, 1830 (2017)CrossRefGoogle Scholar
  41. 41.
    X. Wan, F. Niu, J. Su, L. Guo, Phys. Chem. Chem. Phys. 18, 31803 (2016)CrossRefGoogle Scholar
  42. 42.
    S. Zhang, X. Gu, Y. Zhao, Y. Qiang, J. Electron. Mater. 45, 648 (2016)CrossRefGoogle Scholar
  43. 43.
    S. Li, X. Gu, Y. Zhao, Y. Qiang, S. Zhang, J. Mater. Sci. Mater. Electron. 27, 8455 (2016)CrossRefGoogle Scholar
  44. 44.
    L.H. Zhu, J.Z. Jiang, H.Q. Tang, Anal. Chim. Acta 816, 41 (2014)CrossRefGoogle Scholar
  45. 45.
    J.C. Ndamanisha, J. Bai, B. Qi, L.P. Guo, Anal. Biochem. 386, 79 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringChina University of Mining and TechnologyXuzhouChina
  2. 2.School of Chemical Engineering and TechnologyChina University of Mining and TechnologyXuzhouChina

Personalised recommendations