Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 22, pp 19256–19263 | Cite as

Deposition time effects on optical gap, dark conductivity and X-ray photoresponse properties of thermal evaporated a-Se thin films

  • Jitao Li
  • Xinghua Zhu
  • Qingshuang Xie
  • Guolin Pu
  • Dingyu Yang
Article
  • 57 Downloads

Abstract

We prepared the amorphous selenium (a-Se) thin films via thermal evaporated method with different deposition time, revealing that the increase of deposition time was propitious to improve the quality of a-Se thin films. In detail, the optical gap of a-Se thin films enhanced from 2.08 to 2.15 eV, and the transmittance showed the blue shift of absorption edges with prolonging deposition time. Further, the dark conductivity was analyzed systematically around three main physics issues. (i) The initial dark conductivity was high and decayed with test time. (ii) The dark conductivity showed a dependence of applied electric field. (iii) The dark conductivity decreased with extending deposition time. Moreover, a-Se thin films showed the improved X-ray photoconductivity gain from 1.5 to 3.1 times under exposure dose rate of 14.83 × 10−4 Gy/s of X-radiation, with a rapid photoresponse and a small applied electric field requirement.

Notes

Acknowledgements

The authors are grateful to the supports provided by National Natural Science Foundation of China (NSFC) (Grant Nos. 11675029, 51707015) and Foundation from Department of Science and Technology of Sichuan Province (Grant No. 2018JY0453).

Author contributions

JL, XZ, DY conceived the study, completed the experiments, and JL wrote the paper; QX, GP completed the literature search and helped the proformance characterizations and result analyses.

Compliance with ethical standards

Conflict of interest

The authors declare no conflicts of interest.

References

  1. 1.
    N. Hijazi, D. Panneerselvam, M.Z. Kabir, Electron-hole pair creation energy in amorphous selenium for high energy photon excitation. J. Mater. Sci.: Mater. Electron. 29, 486–490 (2018)Google Scholar
  2. 2.
    M. Tomoaki, K. Shingo, O. Masanori, K. Richika, S. Ichitaro, Y. Takatoshi, T. Angel, T. Koh, H. Daniel, C. Chua, Conditions for a carrier multiplication in amorphous-selenium based photodetector. Appl. Phys. Lett. 102, 073506 (2013)CrossRefGoogle Scholar
  3. 3.
    A.V. Kolobov, P. Fons, Insights into the physics and chemistry of chalcogenides obtained from X-ray absorption spectroscopy. Semicond. Sci. Technol. 32, 123003 (2017)CrossRefGoogle Scholar
  4. 4.
    S. Gayathri, S. Sridevi, S. Asokan, Investigations on photo-mechanical and photo-thermo-mechanical strain variations in amorphous selenium using fiber Bragg grating sensor. J. Non-Cryst. Solids 477, 7–11 (2017)CrossRefGoogle Scholar
  5. 5.
    A. Shiva, T. Alireza, S.W. William, S.K. Karim, Enhanced dark current suppression of amorphous selenium detector with use of IGZO hole blocking layer. IEEE Trans. Electron. Dev. 61, 3355–3357 (2014)CrossRefGoogle Scholar
  6. 6.
    M.L. Benkhedir, M.S. Aida, G.J. Adriaenssens, Defect levels in the band gap of amorphous selenium. J. Non-Cryst. Solids 344, 193–198 (2004)CrossRefGoogle Scholar
  7. 7.
    M.F. Kotkata, F.A. Abdel-Wahab, M.S. Al-Kotb, Effect of In-content on the optical properties of a-Se films. Appl. Surf. Sci. 255, 9071–9077 (2009)CrossRefGoogle Scholar
  8. 8.
    T.Y. Yu, F.M. Pan, C.Y. Chang, J.S. Lin, W.H. Huang, Thermal stability and photoconductive properties of photosensors with an alternating multilayer structure of amorphous Se and AsxSe1–x. J. Appl. Phys. 118, 044509 (2015)CrossRefGoogle Scholar
  9. 9.
    D. Tonchev, H. Mani, G. Belev, I. Kostova, S. Kasap, X-ray sensing materials stability: influence of ambient storage temperature on essential thermal properties of undoped vitreous selenium. J. Phys. Conf. Ser. 558, 012007 (2014)CrossRefGoogle Scholar
  10. 10.
    J. Li, X. Zhu, D. Yang, P. Gu, H. Wu, Investigations on structural, optical and X-radiation responsive properties of a-Se thin films fabricated by thermal evaporationmethod at low vacuum degree. Materials 11, 368 (2018)CrossRefGoogle Scholar
  11. 11.
    D. Değer, K. Ulutas, Conduction and dielectric polarization in Se thin films. Vacuum 72, 307–312 (2003)CrossRefGoogle Scholar
  12. 12.
    E.A. Davis, Optical absorption, transport and photoconductivity in amorphous selenium. J. Non-Cryst. Solids 4, 107–116 (1970)CrossRefGoogle Scholar
  13. 13.
    R.A. Street, Thermal generation currents in hydrogenated amorphous silicon p-i-n structures. Appl. Phys. Lett. 57, 1334 (1990)CrossRefGoogle Scholar
  14. 14.
    M.Z. Kabir, Dark current mechanisms in amorphous selenium-based photoconductive detectors: an overview and re-examination. J. Mater. Sci.: Mater. Electron. 26, 1–9 (2015)Google Scholar
  15. 15.
    R. Swanepoel, Determining refractive index and thickness of thin films from wavelength measurements only. J. Opt. Soc. Am. A 2, 1339–1343 (1985)CrossRefGoogle Scholar
  16. 16.
    G.B. Tong, Z. Aspanut, M.R. Muhamad, S.A. Rahman, Optical properties and crystallinity of hydrogenated nanocrystalline silicon (nc-Si:H) thin films deposited by rf-PECVD. Vacuum 86, 1195–1202 (2012)CrossRefGoogle Scholar
  17. 17.
    I. Saito, W. Miyazaki, M. Onishi, Y. Kudo, T. Masuzawa, A transparent ultraviolet triggered amorphous selenium p-n junction. Appl. Phys. Lett. 98, 152102 (2011)CrossRefGoogle Scholar
  18. 18.
    M. Abkowitz, Density of states in a-Se from combined analysis of xerographic potentials and transient transport data. Philos. Mag. Lett. 58(1), 53–57 (1988)CrossRefGoogle Scholar
  19. 19.
    S. Kasap, C. Juhasz, Time-of-flight drift mobility measurements on chlorine doped amorphous selenium films. J. Phys. D: Appl. Phys. 18, 703 (1985)CrossRefGoogle Scholar
  20. 20.
    J.B. Frey, G. Belev, O. Tousignant, H. Mani, L. Laperriere, Dark current in multilayer stabilized amorphous selenium based photoconductive X-ray detectors. J. Appl. Phys. 112, 014502 (2012)CrossRefGoogle Scholar
  21. 21.
    M.Z. Kabir, Transient and steady-state dark current mechanisms in polycrystalline mercuric iodide X-ray imaging detectors. Nucl. Instrum. Methods Phys. Res. A 736, 156–160 (2014)CrossRefGoogle Scholar
  22. 22.
    S.A. Mahmood, M.Z. Kabir, Modeling of transient and steady-state dark current in amorphous silicon p-i-n photodiodes. Curr. Appl. Phys. 9, 1393–1396 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Jitao Li
    • 1
  • Xinghua Zhu
    • 1
  • Qingshuang Xie
    • 1
  • Guolin Pu
    • 1
  • Dingyu Yang
    • 2
  1. 1.College of Intelligent ManufacturingSichuan University of Arts and ScienceDazhouChina
  2. 2.College of Optoelectronic TechnologyChengdu University of Information TechnologyChengduChina

Personalised recommendations