Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 22, pp 19245–19255 | Cite as

Electrochemical analysis of dye sensitized solar cell employing indoline-based and ruthenium-based dye combined with volatile and low-volatility solution-based electrolyte

  • Runbang Tao
  • Gerald Ensang Timuda
  • Keiko Waki
Article

Abstract

In this study, the photovoltaic performances of dye-sensitized solar cells (DSSCs) have been studied for four different configurations involving two dyes (indoline-based, D205 dye, and ruthenium-based, N719 dye, respectively) and two types of electrolyte (volatile and low viscosity-based electrolyte, AN-50, and low-volatility and high-viscosity based electrolyte, Z-50, respectively). The electron transport and recombination properties in DSSCs have been investigated by electrochemical impedance spectroscopy, intensity-modulated photo-voltage spectroscopy and charge extraction methods. The D205 dye outperformed the N719 counterpart when the low-volatility electrolyte, Z-50, was employed, and similar performances between the two dyes were shown for the AN-50 electrolyte employment. The electron diffusion length was found to be positively correlated with and mainly responsible for the cells’ performances. Different dyes and/or electrolytes employment which was likely altered TiO2 nanoparticle’s surface properties were found to give influence on the electron transport properties inside the nanostructured film in this study.

References

  1. 1.
    B. O’Regan, M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991)CrossRefGoogle Scholar
  2. 2.
    M. Gratzel, Photoelectrochemical cells. Nature 414, 338–344 (2001)CrossRefGoogle Scholar
  3. 3.
    B. Liu, E.S. Aydil, Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells. J. Am. Chem. Soc. 131, 3985–3990 (2009)CrossRefGoogle Scholar
  4. 4.
    T. Yuan, H. Lu, B. Dong, L. Zhao, L. Wan, S. Wang, Z. Xu, Single-crystalline rutile TiO2 nanorod arrays with high surface area for enhanced conversion efficiency in dye-sensitized solar cells. J. Mater. Sci.: Mater. Electron. 26, 1332–1337 (2015)Google Scholar
  5. 5.
    J.A. Anta, E. Guillen, R. Tena-Zaera, ZnO-based dye-sensitized solar cells. J. Phys. Chem. C 116, 11413–11425 (2012)CrossRefGoogle Scholar
  6. 6.
    C.W. Kung, H.W. Chen, C.Y. Lin, Y.H. Lai, R. Vittal, K.C. Ho, Electrochemical synthesis of a double-layer film of ZnO nanosheets/nanoparticles and its application for dye-sensitized solar cells. Prog. Photovolt.: Res. Appl. 22, 440–451 (2014)CrossRefGoogle Scholar
  7. 7.
    L. Roza, K.A.J. Fairuzy, P. Dewanta, A.A. Umar, M.Y.A. Rahman, M.M. Salleh, Effect of molar ratio of zinc nitrate: hexamethylenetetramine on the properties of ZnO thin film nanotubes and nanorods and the performance of dye-sensitized solar cell (DSSC). J. Mater. Sci.: Mater. Electron. 26, 7955–7966 (2015)Google Scholar
  8. 8.
    Z.S. Wang, N. Koumura, Y. Cui, M. Takahashi, H. Sekiguchi, A. Mori, T. Kubo, A. Furube, K. Hara, Hexylthiophene-functionalized carbazole dyes for efficient molecular photovoltaics: tuning of solar-cell performance by structural modification. Chem. Mater. 20, 3993–4003 (2008)CrossRefGoogle Scholar
  9. 9.
    S. Ito, H. Miura, S. Uchida, M. Takata, K. Sumioka, P. Liska, P. Comte, P. Pechy, M. Gratzel, High-conversion-efficiency organic dye-sensitized solar cells with a novel indoline dye. Chem. Commun. 41, 5194–5196 (2008)CrossRefGoogle Scholar
  10. 10.
    Z. Yao, M. Zhang, H. Wu, L. Yang, R. Li, P. Wang, Donor/acceptor indenoperylene dye for highly efficient organic dye-sensitized solar cells. J. Am. Chem. Soc. 137, 3799–3802 (2015)CrossRefGoogle Scholar
  11. 11.
    A. Yella, H.W. Lee, H.N. Tsao, C. Yi, A.K. Chandiran, M.K. Nazeeruddin, E.W.G. Diau, C.Y. Yeh, S.M. Zakeeruddin, M. Grätzel, Porphyrin-sensitized solar cells with cobalt (II/III)—based redox electrolyte exceed 12 percent efficiency. Science 334, 629–634 (2011)CrossRefGoogle Scholar
  12. 12.
    S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B.F.E. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M.K. Nazeeruddin, M. Gratzel, Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat. Chem. 6, 242–247 (2014)CrossRefGoogle Scholar
  13. 13.
    S. Kotteswaran, M.S. Pandian, P. Ramasamy, Synthesis, optical, electrochemical and photovoltaic properties of donor modified organic dyes for dye-sensitized solar cell (DSSC) applications. J. Mater. Sci.: Mater. Electron. 29, 6672–6678 (2018)Google Scholar
  14. 14.
    J. Lin, Y.U. Heo, A. Nattestad, M. Shahabuddin, Y. Yamauchi, J.H. Kim, N719- and D149-sensitized 3D hierarchical rutile TiO2 solar cells—a comparative study. Phys. Chem. Chem. Phys. 17, 7208–7213 (2015)CrossRefGoogle Scholar
  15. 15.
    M. Miyashita, K. Sunahara, T. Nishikawa, Y. Uemura, N. Koumura, K. Hara, A. Mori, T. Abe, E. Suzuki, S. Mori, Interfacial electron-transfer kinetics in metal-free organic dye-sensitized solar cells: combined effects of molecular structure of dyes and electrolytes. J. Am. Chem. Soc. 130, 17874–17881 (2008)CrossRefGoogle Scholar
  16. 16.
    F. Hao, X. Jiao, J. Li, H. Lin, Solvent dipole modulation of conduction band edge shift and charge recombination in robust dye-sensitized solar cells. Nanoscale 5, 726–733 (2013)CrossRefGoogle Scholar
  17. 17.
    S. Venkatesan, S.-C. Su, S.-C. Kao, H. Teng, Y.-L. Lee, Stability improvement of gel-state dye-sensitized solar cells by utilization the co-solvent effect of propionitrile/acetonitrile and 3-methoxypropionitrile/acetonitrile with poly(acrylonitrile-co-vinyl acetate). J. Power Sources 274, 506–511 (2015)CrossRefGoogle Scholar
  18. 18.
    D. Kuang, S. Uchida, R. Humphry-Baker, S. Zakeeruddin, M. Gratzel, Organic dye-sensitized ionic liquid based solar cells: remarkable enhancement in performance through molecular design of indoline sensitizers. Angew. Chem. Int. Ed. 47, 1923–1927 (2008)CrossRefGoogle Scholar
  19. 19.
    P. Wang, S.M. Zakeeruddin, J.-E. Moser, M.K. Nazeeruddin, T. Sekiguchi, M. Gratzel, A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte. Nat. Mater. 2, 402–407 (2003)CrossRefGoogle Scholar
  20. 20.
    P. Wang, C. Klein, R. Humphry-Baker, S.M. Zakeeruddin, M. Gratzel, Stable ≥8% efficient nanocrystalline dye-sensitized solar cell based on an electrolyte of low volatility. Appl. Phys. Lett. 86, 123508 (2005)CrossRefGoogle Scholar
  21. 21.
    N.W. Duffy, L.M. Peter, R.M.G. Rajapakse, K.G.U. Wijayantha, A novel charge extraction method for the study of electron transport and interfacial transfer in dye sensitized nanocrystalline solar cells. Electrochem. Commun. 2, 658–662 (2000)CrossRefGoogle Scholar
  22. 22.
    L.M. Peter, N.W. Duffy, R.L. Wang, K.G.U. Wijayantha, Transport and interfacial transfer of electrons in dye-sensitized nanocrystalline solar cells. J. Electroanal. Chem. 524–525, 127–136 (2002)CrossRefGoogle Scholar
  23. 23.
    Q. Wang, S. Ito, M. Gratzel, F. Fabregat-Santiago, I. Mora-Sero, J. Bisquert, T. Bessho, H. Imai, Characteristics of high efficiency dye-sensitized solar cells. J. Phys. Chem. B 110, 25210–25221 (2006)CrossRefGoogle Scholar
  24. 24.
    V.M. Guerin, C. Magne, Th Pauporté, T. Le Bahers, J. Rathousky, Electrodeposited nanoporous versus nanoparticulate ZnO films of similar roughness for dye-sensitized solar cell applications. ACS Appl. Mater. Interfaces 2, 3677–3685 (2010)CrossRefGoogle Scholar
  25. 25.
    J. Archana, M. Navaneethan, Y. Hayakawa, Solvothermal growth of high surface area mesoporous anatase TiO2 nanospheres and investigation of dye-sensitized solar cell properties. J. Power Sources 242, 803–810 (2013)CrossRefGoogle Scholar
  26. 26.
    F. Fabregat-Santiago, J. Bisquert, G. Garcia-Belmontea, G. Boschloob, A. Hagfeldt, Influence of electrolyte in transport and recombination in dye-sensitized solar cells studied by impedance spectroscopy. Sol. Energy Mater. Sol. Cells 87, 117–131 (2005)CrossRefGoogle Scholar
  27. 27.
    L.Y. Han, N. Koide, Y. Chiba, T. Mitate, Modeling of an equivalent circuit for dye-sensitized solar cells. Appl. Phys. Lett. 84, 2433–2435 (2004)CrossRefGoogle Scholar
  28. 28.
    A. Hauch, A. Georg, Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells. Electrochim. Acta 46, 3457–3466 (2001)CrossRefGoogle Scholar
  29. 29.
    E. Guillen, L.M. Peter, J. Anta, Electron transport and recombination in ZnO-based dye-sensitized solar cells. J. Phys. Chem. C 115, 22622–22632 (2011)CrossRefGoogle Scholar
  30. 30.
    S.R. Raga, E.M. Barea, F. Fabregat-Santiago, Analysis of the origin of open circuit voltage in dye solar cells. J. Phys. Chem. Lett. 3, 1629–1634 (2012)CrossRefGoogle Scholar
  31. 31.
    M. Adachi, M. Sakamoto, J. Jiu, Y. Ogata, S. Isoda, Determination of parameters of electron transport in dye-sensitized solar cells using electrochemical impedance spectroscopy. J. Phys. Chem. B 110, 13872–13880 (2006)CrossRefGoogle Scholar
  32. 32.
    J. Bisquert, Chemical capacitance of nanostructured semiconductors: its origin and significance for nanocomposite solar cells. Phys. Chem. Chem. Phys. 5, 5360–5364 (2003)CrossRefGoogle Scholar
  33. 33.
    J. Bisquert, A. Zaban, The trap-limited diffusivity of electrons in nanoporous semiconductor networks permeated with a conductive phase. Appl. Phys. A 77, 507–514 (2003)CrossRefGoogle Scholar
  34. 34.
    L. Feng, J. James Robert, M. Nripan, W. Qing, Evolution of charge collection/separation efficiencies in dye-sensitized solar cells upon aging: a case study. J. Electrochem. Soc. 158, B1158–B1163 (2011)CrossRefGoogle Scholar
  35. 35.
    J. Halme, G. Boschloo, A. Hagfeldt, P. Lund, Spectral characteristics of light harvesting, electron injection, and steady-state charge collection in pressed TiO2 dye solar cells. J. Phys. Chem. C 112, 5623–5637 (2008)CrossRefGoogle Scholar
  36. 36.
    D.F. Watson, G.J. Meyer, Cation effects in nanocrystalline solar cells. Coord. Chem. Rev. 248, 1391–1406 (2004)CrossRefGoogle Scholar
  37. 37.
    A.B.F. Martinson, M.S. Goes, F. Fabregat-Santiago, J. Bisquert, M.J. Pellin, J.T. Hupp, Electron transport in dye-sensitized solar cells based on ZnO nanotubes: evidence for highly efficient charge collection and exceptionally rapid dynamics. J. Phys. Chem. A 113, 4015–4021 (2009)CrossRefGoogle Scholar
  38. 38.
    H. Wang, L.M. Peter, Influence of electrolyte cations on electron transport and electron transfer in dye-sensitized solar cells. J. Phys. Chem. C 116, 10468–10475 (2012)CrossRefGoogle Scholar
  39. 39.
    E. Hendry, M. Koeberg, B. O’Regan, M. Bonn, Local field effects on electron transport in nanostructured TiO2 revealed by terahertz spectroscopy. Nano Lett. 6, 755–759 (2006)CrossRefGoogle Scholar
  40. 40.
    P. Tiwana, P. Docampo, M.B. Johnston, H.J. Snaith, L.M. Herz, Electron mobility and injection dynamics in mesoporous ZnO, SnO2, and TiO2 films used in dye-sensitized solar cells. ACS Nano 5, 5158–5166 (2011)CrossRefGoogle Scholar
  41. 41.
    C. Zhang, Y. Huang, Z. Huo, S. Chen, S. Dai, Photoelectrochemical effects of guanidinium thiocyanate on dye-sensitized solar cell performance and stability. J. Phys. Chem. C 113, 21779–21783 (2009)CrossRefGoogle Scholar
  42. 42.
    J. Chen, G.E. Timuda, K. Waki, Effect of additives on the trap state distribution of TiO2 anode in dye-sensitized solar cells. ECS Trans. 80(10), 1127–1136 (2017)CrossRefGoogle Scholar
  43. 43.
    C. Zhang, J. Dai, Z. Huo, X. Pan, L. Hu, F. Kong, Y. Huang, Y. Sui, X. Fang, K. Wang, S. Dai, Influence of 1-methylbenzimidazole interactions with Li+ and TiO2 on the performance of dye-sensitized solar cells. Electrochim. Acta 53, 5503–5508 (2008)CrossRefGoogle Scholar
  44. 44.
    J. Bisquert, F. Fabregat-Santiago, I. Mora-Sero, G. Garcia-Belmonte, S. Gimenez, Electron lifetime in dye sensitized solar cells: theory and interpretation of measurement. J. Phys. Chem. C 113, 17278–17290 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Runbang Tao
    • 1
  • Gerald Ensang Timuda
    • 2
  • Keiko Waki
    • 3
  1. 1.School of Automotive and Traffic EngineeringJiangsu University of TechnologyChangzhouPeople’s Republic of China
  2. 2.Research Center for Physics, Indonesian Institute of Sciences (LIPI)Kawasan PUSPIPTEKTangerang SelatanIndonesia
  3. 3.Department of Chemical Science and EngineeringTokyo Institute of TechnologyYokohamaJapan

Personalised recommendations