Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 22, pp 19228–19237 | Cite as

Synthesis and characterization of novel reduced graphene oxide supported barium niobate (RGOBN) nanocomposite with enhanced ferroelectric properties and thermal stability

  • M. Infant Shyam Kumar
  • S. Shahil Kirupavathy
  • Eunice Jerusha
  • S. Sureshkumar
  • M. Vinolia
Article
  • 58 Downloads

Abstract

Novel reduced graphene oxide/barium niobate (RGOBN) nanocomposites were synthesized by hydrothermal method. The microstructure and morphology of graphene oxide, barium niobate and reduced graphene oxide/barium niobate was analysed by X-ray diffraction (XRD), FTIR, FTRaman, high resolution scanning electron microscopy and EDAX. XRD analysis showed that Barium Niobate samples are in perovskite phases, and the lattice parameters a, b and c almost decreased linearly with the increase of graphene nanosheets. The optical studies reveal the band gap of the nanocomposite to be 2.86 eV. Thermal studies show that RGOBN has high thermal stability than graphene. The remanant polarization and coercive electric field (0.0892 µC cm−2, −10.81 kV cm−1) of RGOBN nanocomposite superlattices calculated using P–E curve showed the strong hybrid interactions between graphene and barium niobate (BN) by decreasing leakage current density from 10−7 to 10−8 Acm−2. Graphene when incorporated into BN nanocubes increased the ferroelectric property almost two times than pure BN nanostructures. The squareness of polarization is also calculated for RGOBN and compared with that of BN.

References

  1. 1.
    B. Luo, X. Wang, E. Tian, H. Gong, Q. Zhao, Z. Shen, Y. Xu, X. Xiao, L. Li, Dielectric enhancement in graphene/barium titanate nanocomposites. ACS Appl. Mater. Interfaces 8, 3340–3348 (2016)CrossRefGoogle Scholar
  2. 2.
    D.H. Wang, D.W. Choi, J. Li, Z.G. Yang, Z.M. Nie, R. Kou, D.H. Hu, C.M. Wang, L.V. Saraf, J.G. Zhang, Self-Assembled TiO2–graphene hybrid nanostructures for enhanced Li-Ion insertion. ACS Nano 3(4), 907–914 (2009)CrossRefGoogle Scholar
  3. 3.
    T. Sekiba, K. Sato, K. Nakayama, P. Terashima, J.H. Richard, H. Bowen, Y.M. Ding, L.J. Xu, G.H. Li, Z.A. Cao, T. Xu, Takahashi, Electronic structure of heavily electron-doped BaFe1.7Co0.3As2 studied by angle-resolved photoemission. New J. Phys. 11, 025020 (2009)CrossRefGoogle Scholar
  4. 4.
    X. Wang, Z. Li, J. Shi, Y. Yu, One-Dimensional titanium dioxide nanomaterials: nanowires, nanorods, and nanobelts. Chem. Rev. 114(19), 9346–9384 (2014)CrossRefGoogle Scholar
  5. 5.
    X. Lang, H. Mo, X. Hu, H. Tian, Supercapacitor performance of perovskite La xSrxMnO3. Dalton Trans. 46, 13720–13730 (2017)CrossRefGoogle Scholar
  6. 6.
    K. Kaviyarasu, C. Maria Magdalane, K. Kanimozhi, J. Kennedy, B. Siddhardha, E. Subba Reddy, N.K. Rotte, C.S. Sharma, F.T. Thema, D. Letsholathebe, G.T. Mola. M. Maaza, Elucidation of photocatalysis, photoluminescence and antibacterial studies of ZnO thin films by spin coating method, J. Photochem. Photobiol. B 173, 466–475 (2017)CrossRefGoogle Scholar
  7. 7.
    D. Du, J. Liu, X. Zhang, X. Cui, Y. Lin, One-step electrochemical deposition of a graphene-ZrO2 nanocomposite: preparation, characterization and application for detection of organophosphorus agents. J. Mater. Chem. 21, 8032–8037 (2011)CrossRefGoogle Scholar
  8. 8.
    S. Giri, D. Ghosh, C.K. Das, Growth of vertically aligned tunable polyaniline on graphene/ZrO2 nanocomposites for supercapacitor energy-storage application. Adv. Funct. Mater. 24, 1312–1324 (2013)CrossRefGoogle Scholar
  9. 9.
    J.S. Kumar, M. Jana, P. Khanra, P. Samanta, H. Koo, N.C. Murmu, T. Kuila, One pot synthesis of Cu2O/RGO composite using mango bark extract and exploration of its electrochemical properties. Electrochim. Acta 193, 104–115 (2016)CrossRefGoogle Scholar
  10. 10.
    S. Khamlich, Z. Abdullaeva, J.V. Kennedy, M. Maaza, High performance symmetric supercapacitor based on zinc hydroxychloride nanosheets and 3D graphene-nickel foam composite. Appl. Surf. Sci. 405, 329–336 (2017)CrossRefGoogle Scholar
  11. 11.
    J. Cheng, B. Wang, H.L. Xin, G. Yang, H. Cai, F. Nie, H. Huang, Self-assembled V2O5 nanosheets/reduced graphene oxide hierarchical nanocomposite as a high-performance cathode material for lithium ion batteries. J. Mater. Chem. A 1, 10814–10820 (2013)CrossRefGoogle Scholar
  12. 12.
    Y. Ye, T. kong, X. Yu, Y. Yu, K. Zhang, X. Wang, Enhanced nonenzymatic hydrogen peroxide sensing with reduced graphene oxide/ferroferric oxide nanocomposites. Talanta 89, 417–421 (2012)CrossRefGoogle Scholar
  13. 13.
    T.S. Sreeprasad, S.M. Maliyekkal, K.P. Lisha, T. Pradeep, Reduced graphene oxide-metal/metal oxide composites: facile synthesis and application in water purification. J. Hazard Mater. 186, 921–931 (2011)CrossRefGoogle Scholar
  14. 14.
    E. Manikandan, G. Kavitha, J. Kennedy, Epitaxial zinc oxide, graphene oxide composite thin-films by laser technique for micro-Raman and enhanced field emission study. Ceram. Int. 40(10), 16065–16070 (2014)CrossRefGoogle Scholar
  15. 15.
    J. Kennedy, F. Fang, J. Futter, J. Leveneur, P.P. Murmu, G.N. Panin, T.W. Kang, E. Manikandan, Synthesis and enhanced field emission of zinc oxide incorporated carbon nanotubes. Diam. Relat. Mater. 71, 79–84 (2017)CrossRefGoogle Scholar
  16. 16.
    E. Manikandan, J. Kennedy, G. Kavitha, K. Kaviyarasu, M. Maaza, B.K. Panigrahi, U.K. Mudali, Hybrid nanostructured thin-films by PLD for enhanced field emission performance for radiation micro-nano dosimetry applications. J. Alloys Compd. 647, 141–145 (2015)CrossRefGoogle Scholar
  17. 17.
    S.K. Hazra, S. Basu, Graphene-oxide nano composites for chemical sensor applications. J. Carbon Res. 2, 12 (2016)CrossRefGoogle Scholar
  18. 18.
    W.S. Hummers Jr., R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958)CrossRefGoogle Scholar
  19. 19.
    M. Zhang, C. Hu, H. Liu, Y. Xiong, Z. Zhang, A rapid-response humidity sensor based on BaNbO3 nanocrystals. Sens. Actuators B 136, 128–132 (2009)CrossRefGoogle Scholar
  20. 20.
    S.Y. Wu, X.M. Chen, X.Q. Liu, Hydrothermal derived barium niobate ultra-fine powders and nanowires. J. Alloys Compd. 453, 463–469 (2008)CrossRefGoogle Scholar
  21. 21.
    X. Mei, X. Meng, F. Wu, Hydrothermal method for the production of reduced graphene oxide. Phys. E 68, 81–86 (2015)CrossRefGoogle Scholar
  22. 22.
    M. Li, X. Xiao, Y. Liu, W. Zhang, Y. Zhang, L. Chen, Ternary perovskite cobalt titanate/graphene composite material as long-term cyclic anode for lithium-ion battery. J. Alloys Compd. 700, 54–60 (2017)CrossRefGoogle Scholar
  23. 23.
    B. Cullity, Elements of X-ray Diffraction (A.W.R.C. Inc., Massachusetts, 1967)Google Scholar
  24. 24.
    A. Kaniyoor, T. Theres Baby, S. Ramaprabhu, Graphene synthesis via hydrogen induced low temperature exfoliation of graphite oxide. J. Mater. Chem. 20, 8467–8469 (2010)CrossRefGoogle Scholar
  25. 25.
    T.Y. Ke, H.A. Chen, H.S. Sheu, J.W. Yeh, H.N. Lin, C.Y. Lee, H.T. Chiu, Sodium niobate nanowire and its piezoelectricity. J. Phys. Chem. C 112, 8827–8883 (2008)CrossRefGoogle Scholar
  26. 26.
    M. Li, X. Fan, X. Xiao, X. Huang, Y. Jiang, L. Chen, Ternary perovskite nickel titanate/reduced graphene oxide nanocomposite with improved lithium storage properties. RSC Adv. 6, 61312–61318 (2016)CrossRefGoogle Scholar
  27. 27.
    W. Bai, H. Huanga, Y. Li, H. Zhang, B. Lianga, R. Guo, L. Dua, Z. Zhanga, Direct preparation of well-dispersed graphene/gold nanorod composites and their application in electrochemical sensors for determination of ractopamine. Electrochem. Acta 117, 322–328 (2014)CrossRefGoogle Scholar
  28. 28.
    S. Vidya, K.C. Mathai, A. John, S. Solomon, K. Joy, J.K. Thomas, Optical and dielectric properties of nano BaNbO3 prepared by a combustion technique. Adv. Mater. Res. 2(3), 141–153 (2013)CrossRefGoogle Scholar
  29. 29.
    K. Anand, O. Singh, M.P. Singh, J. Kaur, R.C. Singh, Hydrogen sensor based on graphene/ZnO nanocomposite. Sens. Actuators B 195, 409–415 (2014)CrossRefGoogle Scholar
  30. 30.
    D. Konios, M.M. Stylianakis, E. Stratakis, E. Kymakis, Dispersion behaviour of graphene oxide and reduced graphene oxide. J. Colloid Interface Sci. 430, 108–112 (2014)CrossRefGoogle Scholar
  31. 31.
    A.A. King, B.R. Davies, N. Noorbehesht, P. Newman, T.L. Church, A.T. Harris, J.M. Razal, A.I. Minett, A new raman metric for the characterisation of graphene oxide and its derivatives. Sci. Rep. 6, 19491. https://doi.org/10.1038/srep19491 CrossRefGoogle Scholar
  32. 32.
    S. Park, H.J. Song, C.W. Lee, S.W. Hwang, I.S. Cho, Enhanced photocatalytic activity of ultrathin Ba5Nb4O15 two-dimensional nanosheets. ACS Appl. Mater. Interfaces, 7(39), 21860–21867 (2015)CrossRefGoogle Scholar
  33. 33.
    Z. Lei, L. Lu, X.S. Zhao, The electrocapacitive properties of graphene oxide reduced by urea. Energy Environ. Sci. 5, 6391 (2012)CrossRefGoogle Scholar
  34. 34.
    B.Y.S. Chang, N.M. Huang, M.N. An’amt, A.R. Marlinda, Y. Norazriena, M.R. Muhamad, I. Harrison, H.N. Lim, C.H. Chia, Facile hydrothermal preparation of titanium dioxide decorated reduced graphene oxide nanocomposite. Int. J. Nanomed. 7, 3379–3387 (2012)Google Scholar
  35. 35.
    Z. Ji, G. Zhu, X. Shen, H. Zhou, C. Wu, M. Wang, Reduced graphene oxide supported FePt alloy nanoparticles with high electrocatalytic performance for methanol oxidation. New J. Chem. 36, 1774–1780 (2012)CrossRefGoogle Scholar
  36. 36.
    S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558–1565 (2007)CrossRefGoogle Scholar
  37. 37.
    C. Xu, X. Wang, J. Zhu, Graphene-metal particle nanocomposites. J. Phys. Chem. C 112(50), 9841–19845 (2008)CrossRefGoogle Scholar
  38. 38.
    C.J. Huang, K. Li, S.Y. Wu, X.L. Zhu, X.M. Chen, Variation of ferroelectric hysteresis loop with temperature in (SrxBa1–x) Nb2O6 unfilled tungsten bronze ceramics. J. Mater. 1(2), 146–152 (2015)Google Scholar
  39. 39.
    M. Chandran, B. Tiwari, C.R. Kumaran, S.K. Samji, S.S. Bhattacharya, M.S.R. Rao, Integration of perovskite PZT thin films on diamond substrate without buffer layer. J. Phys. D: Appl. Phys. 45, 202001 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsRajalakshmi Engineering CollegeChennaiIndia
  2. 2.Faculty of TechnologyAnna UniversityChennaiIndia
  3. 3.Department of PhysicsVelammal Engineering CollegeChennaiIndia
  4. 4.Department of PhysicsR.M.D. Engineering CollegeKavaraipettaiIndia

Personalised recommendations