Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 22, pp 19207–19218 | Cite as

Surface modification of Li1.20Mn0.54Ni0.13Co0.13O2 cathode materials with SmF3 and the improved electrochemical properties

  • Xiaoheng GengEmail author
  • Haiying Guo
  • Chunzhi Wang
  • Mingming Cheng
  • Yuhao Li
  • Hongkun Zhang
  • Hongjun Huo


The Li1.20Mn0.54Ni0.13Co0.13O2 cathode materials with the different SmF3 coating contents were successfully synthesized through the typical wet chemical method. The X-ray diffractometer, scanning electron microscopy, transmission electron microscope, X-ray photoelectron spectroscopy and galvanostatic charge–discharge tests were adopted to investigate the influence of SmF3 layer on the crystal structural, morphology and electrochemical properties of Li1.20Mn0.54Ni0.13Co0.13O2. The results showed that the cathode materials were successfully coated with SmF3 without changing its micro-structure. Besides, the electrochemical tests results demonstrated that electrochemical properties of Li1.20Mn0.54Ni0.13Co0.13O2 were significantly enhanced after applying the SmF3 coating. The specific discharge capacity of the 2 wt% SmF3 coated Li1.20Mn0.54Ni0.13Co0.13O2 is 30.4 mAh g−1 higher than that of pristine one at 0.5C rate. Meanwhile, the 2 wt% SmF3 coated Li1.20Mn0.54Ni0.13Co0.13O2 delivered an outstanding cycle stability with a high capacity retention of 91.4% after 100 cycles, while the pristine one showed the less discharge capacity and a low capacity retention of 85.2%. The enhanced electrochemical properties could be ascribed to the SmF3 coating layer, which not only stabilizes the cathode structure by restricting the side reaction between cathodes materials with electrolyte, but also relieves the increase of impedance for Li+ migration across the electrode/electrolyte interface during cycling.



This work was supported by Shandong Provincial Natural Science Foundation, China (ZR2016EEP11); Shandong province key research and development project, China (2017GSF216008).


  1. 1.
    J. Ou, L. Yang, X.H. Xi, Flour-assisted simple fabrication of LiCoO2 with enhanced electrochemical performances for lithium ion batteries. J. Mater. Sci. 27, 9008–9014 (2016)Google Scholar
  2. 2.
    G. Liu, Development of a general sustainability indicator for renewable energy systems: a review. Renew. Sustain. Energy Rev. 31, 611–621 (2014)CrossRefGoogle Scholar
  3. 3.
    M. Freire, N.V. Kosova, C. Jordy, D. Chateigner, O.I. Lebedev, A. Maignan, V. Pralong, A new active Li-Mn-O compound for high energy density Li-ion batteries. Nat. Mater. 15, 173–177 (2016)CrossRefGoogle Scholar
  4. 4.
    E. Oz, S. Altin, S. Demirel, A. Bayri, E. Altin, O. Baglayan, S. Avci, Electrochemical effects and magnetic properties of B substituted LiCoO2: improving Li-battery performance. J. Alloys Compd. 657, 835–847 (2016)CrossRefGoogle Scholar
  5. 5.
    X. Wei, Y. Guan, X. Zheng, Q. Zhu, J. Shen, N. Qiao, S. Zhou, B. Xu, Improvement on high rate performance of LiFePO4 cathodes using graphene as a conductive agent. Appl. Surf. Sci. 440, 748–754 (2018)CrossRefGoogle Scholar
  6. 6.
    F. Marchini, E.J. Calvo, F.J. Williams, Effect of the electrode potential on the surface composition and crystal structure of LiMn2O4 in aqueous solutions. Electrochim. Acta 269, 706–713 (2018)CrossRefGoogle Scholar
  7. 7.
    L. Li, Y. Cao, H. Zheng, C. Feng, AlPO4 coated LiNi1/3Co1/3Mn1/3O2 for high performance cathode material in lithium batteries. J. Mater. Sci. 28, 1925–1930 (2017)Google Scholar
  8. 8.
    B. Ebin, G. Lindbergh, S. Gu¨rmen, Preparation and electrochemical properties of nanocrystalline LiBxMn2−xO4 cathode particles for Li-ion batteries by ultrasonic spray pyrolysis method. J. Alloys Compd. 620, 399–406 (2015)CrossRefGoogle Scholar
  9. 9.
    H. Chen, Q. Hu, Z. Huang, Z. He, Z. Wang, H. Guo, X. Li, Synthesis and electrochemical study of Zr-doped Li[Li0.2Mn0.54Ni0.13Co0.13]O2 as cathode material for Li-ion battery. Ceram. Int. 42, 263–269 (2016)CrossRefGoogle Scholar
  10. 10.
    Z. Huang, X. Li, Y. Liang, Z. He, H. Chen, Z. Wang, H. Guo, Structural and electrochemical characterization of Mg-doped Li1.2[Mn0.54Ni0.13Co0.13]O2 cathode material for lithium ion batteries. Solid State Ionics 282, 88–94 (2015)CrossRefGoogle Scholar
  11. 11.
    E. Lee, R. Koritala, D.J. Miller, C.S. Johnson, Aluminum and gallium substitution into 0.5Li2MnO3·0.5Li(Ni0.375Mn0.375Co0.25)O2 layered composite and the voltage fade effect. J. Electrochem. Soc. 162, A322–A329 (2015)CrossRefGoogle Scholar
  12. 12.
    Z. He, Z. Wang, H. Chen, Z. Huang, X. Li, H. Guo, R. Wang, Electrochemical performance of zirconium doped lithium rich layered Li1.2Mn0.54Ni0.13Co0.13O2 oxide with porous hollow structure. J. Power Sources 299, 334–341 (2015)CrossRefGoogle Scholar
  13. 13.
    X. Zhu, Y. Wang, K. Shang, W. He, X. Ai, H. Yang, Y. Cao, Improved rate capability of the conducting functionalized FTO-coated Li-[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for Li-ion batteries. J. Mater. Chem. A 3, 17113–17119 (2015)CrossRefGoogle Scholar
  14. 14.
    C.L. Wang, F. Zhou, K.M. Chen, J.Z. Kong, Y.X. Jiang, G.Z. Yan, J.X. Li, C. Yu, W.P. Tang, Electrochemical properties of α-MoO3-coated Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for Li-ion batteries. Electrochim. Acta 176, 1171–1181 (2015)CrossRefGoogle Scholar
  15. 15.
    Y. Xu, X. Li, Z. Wang, H. Guo, W. Peng, W. Pan, The enhanced high cut-off voltage electrochemical performances of LiNi0.5Co0.2Mn0.3O2 by the CeO2 modification. Electrochim. Acta 219, 49–60 (2016)CrossRefGoogle Scholar
  16. 16.
    G. Wu, J. Li, K. Wang, Y. Wang, C. Pan, A. Feng, In situ synthesis and preparation of TiO2/polyimide composite containing phenolphthalein functional group. J. Mater. Sci. 28, 6544–6551 (2017)Google Scholar
  17. 17.
    C. Pan, K. Kou, G. Wu, Y. Zhang, Y. Wang, Fabrication and characterization of AlN/PTFE composites with low dielectric constant and high thermal stability for electronic packaging. J. Mater. Sci. 27, 286–292 (2016)Google Scholar
  18. 18.
    C. Pan, K. Kou, Y. Zhang, Z. Li, G. Wu, Enhanced through-plane thermal conductivity of PTFE composites with hybrid fillers of hexagonal boron nitride platelets and aluminum nitride particles. Compos. B 153, 1–8 (2018)CrossRefGoogle Scholar
  19. 19.
    Y. Zuo, B. Huang, C. Jiao, R. Lv, G. Liang, Enhanced electrochemical properties of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 with ZrF4 surface modification as cathode for Li-ion batteries. J. Mater. Sci. 29, 524–534 (2018)Google Scholar
  20. 20.
    C.D. Li, J. Xu, J.S. Xia, W. Liu, X. Xiong, Z.A. Zheng, Influences of FeF3 coating layer on the electrochemical properties of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode materials for lithium-ion batteries. Solid State Ionics 292, 75–82 (2016)CrossRefGoogle Scholar
  21. 21.
    X.Y. Liu, J.L. Liu, T. Huang, A.S. Yu, CaF2-coated Li1.2Mn0.54Ni0.13Co0.13O2 as cathode materials for Li-ion batteries. Electrochim. Acta 109, 52–58 (2013)CrossRefGoogle Scholar
  22. 22.
    N. Li, R. An, Y.F. Su, F. Wu, L.Y. Bao, L. Chen, Y. Zheng, H.F. Shou, S. Chen, The role of yttrium content in improving electrochemical performance of layered lithium-rich cathode materials for Li-ion batteries. J. Mater. Chem. A 1, 9760–9767 (2013)CrossRefGoogle Scholar
  23. 23.
    S. Kang, H. Qin, Y. Fang, X. Lia, Y. Wang, Preparation and electrochemical performance of Yttrium-doped Li[Li0.20Mn0.534Ni0.133Co0.133]O2 as cathode material for Lithium-ion batteries. Electrochim. Acta 144, 22–30 (2014)CrossRefGoogle Scholar
  24. 24.
    G.F. Xu, Q.R. Xue, J.L. Li, Z.Y. Li, X.P. Li, T.H. Yu, J.G. Li, X.D. Wang, F.Y. Kang, Understanding the enhanced electrochemical performance of samarium substituted Li[Li0.2Mn0.54 – xSmxCo0.13Ni0.13]O2 cathode material for lithium ion batteries. Solid State Ionics 293, 7–12 (2016)CrossRefGoogle Scholar
  25. 25.
    C.-D. Li, Z.-L. Yao, J. Xu, P. Tang, X. Xiong, Surface-modified Li[Li0.2Mn0.54Ni0.13Co0.13]O2 nanoparticles with LaF3 as cathode for Li-ion battery. Ionics 23, 549–558 (2017)CrossRefGoogle Scholar
  26. 26.
    C. Lu, H. Wu, Y. Zhang, H. Liu, B. Chen, N. Wu, S. Wang, Cerium fluoride coated layered oxide Li1.2Mn0.54Ni0.13Co0.13O2 as cathode materials with improved electrochemical performance for lithium ion batteries. J. Power Sources 267, 682–691 (2014)CrossRefGoogle Scholar
  27. 27.
    Z. Shen, D. Li, Influence of lithium content on the structural and electrochemical properties of Li1.20+xMn0.54Ni0.13Co0.13O2 cathode materials for Li-ion batteries. J. Mater. Sci. 28, 13257–13266 (2017)Google Scholar
  28. 28.
    X. Li, L. Zheng, Z. Zang, T. Liu, F. Cao, X. Sun, S. Sun, Q. Niu, Y. Lu, T. Ohsaka, J. Wu, Multiply depolarized composite cathode of Li1.2Mn0.54Ni0.13Co0.13O2 embedded in a combinatory conductive network for lithium-ion battery with superior overall performances. J. Alloys Compd. 744, 41–50 (2018)CrossRefGoogle Scholar
  29. 29.
    S. Ma, X. Hou, Y. Li, Q. Ru, S. Hu, K. Lam, Performance and mechanism research of hierarchically structured Li-rich cathode materials for advanced lithium–ion batteries. J. Mater. Sci. 28, 2705–2715 (2017)Google Scholar
  30. 30.
    X. Yuan, Q. Xu, X. Liu, W. Shen, H. Liu, Y. Xia, Excellent rate performance and high capacity of Mo doped layered cathode material Li[Li0.2Mn0.54Ni0.13Co0.13]O2 derived from an improved coprecipitation approach. Electrochim. Acta 207, 120–129 (2016)CrossRefGoogle Scholar
  31. 31.
    D. Dai, B. Li, H. Tang, K. Chang, K. Jiang, Z. Chang, X. Yuan, Simultaneously improved capacity and initial coulombic efficiency of Li-rich cathode Li [Li0.2Mn0.54Co0.13Ni0.13]O2 by enlarging crystal cell from a nanoplate precursor. J. Power Sources 307, 665–672 (2016)CrossRefGoogle Scholar
  32. 32.
    S. Sun, N. Wan, Q. Wu, X. Zhang, D. Pan, Y. Bai, X. Lu, Surface-modified Li[Li0.2Ni0.17Co0.07Mn0.56]O2 nanoparticles with MgF2 as cathode for Li-ion battery. Solid State Ionics 278, 85–90 (2015)CrossRefGoogle Scholar
  33. 33.
    L. He, J. Xu, T. Han, H. Han, Y. Wang, J. Yang, J. Wang, W. Zhu, C. Zhang, Y. Zhang, SmPO4-coated Li1.2Mn0.54Ni0.13Co0.13O2 as a cathode material with enhanced cycling stability for lithium ion batteries. Ceram. Int. 43, 5267–5273 (2017)CrossRefGoogle Scholar
  34. 34.
    C. Lu, H. Wu, B. Chen, H. Liu, Y. Zhang, Improving the electrochemical properties of Li1.2Mn0.52Co0.08Ni0.2O2 cathode material by uniform surface nanocoating with samarium fluoride through depositional-hydrothermal route. J. Alloys Compd. 634, 75–82 (2015)CrossRefGoogle Scholar
  35. 35.
    X. Ma, H. He, Y. Sun, Y. Zhang, Synthesis of Li1.2Mn0.54Co0.13Ni0.13O2 by sol-gel method and its electrochemical properties as cathode materials for lithium-ion batteries. J. Mater. Sci. 28, 16665–16671 (2017)Google Scholar
  36. 36.
    Y. Lu, S. Shi, F. Yang, T. Zhang, H. Niu, T. Wang, Mo-doping for improving the ZrF4 coated-Li[Li0.20Mn0.54Ni0.13Co0.13]O2 as high performance cathode materials in lithium-ion batteries. J. Alloys Compd. 767, 23–33 (2018)CrossRefGoogle Scholar
  37. 37.
    H. Meng, L. Li, J. Liu, X. Han, W. Zhang, X. Liu, Q. Xu, Surface modification of Li-rich layered Li[Li0.17Ni0.17Co0.10Mn0.56]O2 oxide with LiV3O8 as a cathode material for Li-ion batteries. J. Alloys Compd. 690, 256–266 (2017)CrossRefGoogle Scholar
  38. 38.
    Y. Lu, M. Pang, S. Shi, Q. Ye, Z. Tian, T. Wang, Enhanced electrochemical properties of Zr4+-doped Li1.20[Mn0.52Ni0.20Co0.08]O2 cathode material for Lithium-ion battery at elevated temperature. Sci. Rep. 8, 2981–2994 (2018)CrossRefGoogle Scholar
  39. 39.
    B. Song, C. Zhou, Y. Chen, Z. Liu, M.O. Lai, J. Xue, L. Lu, Role of carbon coating in improving electrochemical performance of Li-rich Li(Li0.2Mn0.54Ni0.13Co0.13)O2 cathode. RSC Adv. 4, 44244–44252 (2014)CrossRefGoogle Scholar
  40. 40.
    W. He, D.D. Yuan, J.F. Qian, X.P. Ai, H.X. Yang, Y.L. Cao, Enhanced high-rate capability and cycling stability of Na-stabilized layered Li1.2[Co0.13Ni0.13Mn0.54]O2 cathode material. J. Mater. Chem. A 1, 11397–11403 (2013)CrossRefGoogle Scholar
  41. 41.
    M. Wang, M. Luo, Y. Chen, Y. Su, L. Chen, R. Zhang, Electrochemical deintercalation kinetics of 0.5Li2MnO3⸱0.5LiNi1/3Mn1/ 3Co1/3O2 studied by EIS and PITT. J. Alloys Compd. 696, 907–913 (2017)CrossRefGoogle Scholar
  42. 42.
    J.Q. Zhao, S. Aziz, Y. Wang, Hierarchical functional layers on high-capacity lithium-excess cathodes for superior lithium ion batteries. J. Power Sources 247, 95–104 (2014)CrossRefGoogle Scholar
  43. 43.
    J.-Z. Kong., H.-F. Zhai, X. Qian, M. Wang, Q.-Z. Wang, A.-D. Li, H. Li, F. Zhou, Improved electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material coated with ultrathin ZnO. J. Alloys Compd. 694, 848–856 (2017)CrossRefGoogle Scholar
  44. 44.
    X.-H. Liu, L.-Q. Kou, T. Shi, K. Liu, L. Chen, Excellent high rate capability and high voltage cycling stability of Y2O3-coated LiNi0.5Co0.2Mn0.3O2. J. Power Sources 267, 874–880 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Xiaoheng Geng
    • 1
    Email author
  • Haiying Guo
    • 1
  • Chunzhi Wang
    • 1
  • Mingming Cheng
    • 1
  • Yuhao Li
    • 1
  • Hongkun Zhang
    • 1
  • Hongjun Huo
    • 1
  1. 1.College of Chemical Engineering and SafetyBinzhou UniversityBinzhouChina

Personalised recommendations