Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 22, pp 19180–19191 | Cite as

Enhancement of degradation of mordant orange, safranin-O and acridine orange by CuS nanoparticles in the presence of H2O2 in dark and in ambient light

  • Fizza Siddique
  • M. A. RafiqEmail author
  • M. F. Afsar
  • M. M. Hasan
  • M. M. Chaudhry


CuS nanoparticles synthesized by solid-state reaction were used to remove Mordant Orange (MO), Acridine Orange (AO), and Safranin-O (SO) from water. Average diameter, band gap and surface area of CuS nanoparticles were 50 nm, 3.2 eV and 1.52 m2/g respectively. CuS nanoparticles removed 22%, 45%, 51% SO, AO, and MO in 180 min respectively. Addition of H2O2 resulted in 100% removal of dyes in 180 min in ambient light and 75% dye removal in dark. H2O2 also increased apparent reaction rate constant (Kapp). Details of dye removal mechanism by CuS nanoparticles and enhanced dye removal due to H2O2 is provided.



We would like to thank Higher Education Commission (HEC) Pakistan for financial support under National Research Project for Universities (NRPU) Project Number 3662.


  1. 1.
    WWAP (2017) Wastewater. The Untapped ResourceGoogle Scholar
  2. 2.
    E. Silveira, P.P. Marques, S.S. Silva et al., Selection of Pseudomonas for industrial textile dyes decolourization. Int. Biodeterior. Biodegrad. 63, 230–235 (2009). CrossRefGoogle Scholar
  3. 3.
    L. Pereira, M. Alves (2012) Dyes-environmental impact and remediation. Environmental Protection Strategies for Sustainable Development. Springer, Dordrecht, pp. 111–162CrossRefGoogle Scholar
  4. 4.
    B. Bethi, S.H. Sonawane, B.A. Bhanvase, S.P. Gumfekar, Nanomaterials-based advanced oxidation processes for wastewater treatment: a review. Chem. Eng. Process. Process Intensif. 109, 178–189 (2016)CrossRefGoogle Scholar
  5. 5.
    K.R. Nemade, S.A. Waghuley, Band gap engineering of CuS nanoparticles for artificial photosynthesis. Mater. Sci. Semicond. Process. 39, 781–785 (2015). CrossRefGoogle Scholar
  6. 6.
    P. Ajibade, N. Botha, Synthesis, optical and structural properties of copper sulfide nanocrystals from single molecule precursors. Nanomaterials 7, 32 (2017). CrossRefGoogle Scholar
  7. 7.
    F.A. Sabah, N.M. Ahmed, Z. Hassan, H.S. Rasheed, High performance CuS p-type thin film as a hydrogen gas sensor. Sens Actuators 249, 68–76 (2016). CrossRefGoogle Scholar
  8. 8.
    A. Šetkus, A. Galdikas, A. Mironas et al., Properties of CuxS thin film based structures: influence on the sensitivity to ammonia at room temperatures. Thin Solid Films 391, 275–281 (2001). CrossRefGoogle Scholar
  9. 9.
    R.S. Mane, C.D. Lokhande, Chemical deposition method for metal chalcogenide thin films. Mater. Chem. Phys. 65, 1–31 (2000). CrossRefGoogle Scholar
  10. 10.
    D. Ayodhya, M. Venkatesham, A. Santoshi kumari et al., Photocatalytic degradation of dye pollutants under solar, visible and UV lights using green synthesised CuS nanoparticles. J. Exp. Nanosci. 11, 418–432 (2016). CrossRefGoogle Scholar
  11. 11.
    A. Casaca, E.B. Lopes, A.P. Gonçalves, M. Almeida, Electrical transport properties of CuS single crystals. J. Phys. Condens. Matter 24, 015701 (2012). CrossRefGoogle Scholar
  12. 12.
    E.J. Silvester, F. Grieser, B.A. Sexton, T.W. Healy, Spectroscopic studies on copper sulfide sols. Langmuir 7, 2917–2922 (1991)CrossRefGoogle Scholar
  13. 13.
    D. Jiang, W. Hu, H. Wang et al., Synthesis, formation mechanism and photocatalytic property of nanoplate-based copper sulfide hierarchical hollow spheres. Chem. Eng. J. 189–190, 443–450 (2012). CrossRefGoogle Scholar
  14. 14.
    W. Xu, S. Zhu, Y. Liang et al., Nanoporous CuS with excellent photocatalytic property. Sci. Rep. 5, 18125 (2015). CrossRefGoogle Scholar
  15. 15.
    L. Mi, W. Wei, Z. Zheng et al., Tunable properties induced by ion exchange in multilayer intertwined CuS microflowers with hierarchal structures. Nanoscale 5, 6589 (2013). CrossRefGoogle Scholar
  16. 16.
    X.-H. Liao, N.-Y. Chen, S. Xu et al., A microwave assisted heating method for the preparation of copper sulfide nanorods. J. Cryst. Growth 252, 593–598 (2003). CrossRefGoogle Scholar
  17. 17.
    U. Shamraiz, A. Badshah, R.A. Hussain et al., Surfactant free fabrication of copper sulphide (CuS–Cu2S) nanoparticles from single source precursor for photocatalytic applications. J. Saudi Chem. Soc. 21, 390–398 (2017). CrossRefGoogle Scholar
  18. 18.
    J. Zhang, Z. Zhang, Hydrothermal synthesis and optical properties of CuS nanoplates. Mater. Lett. 62, 2279–2281 (2008). CrossRefGoogle Scholar
  19. 19.
    T.Y. Ding, M.S. Wang, S.P. Guo et al., CuS nanoflowers prepared by a polyol route and their photocatalytic property. Mater. Lett. 62, 4529–4531 (2008). CrossRefGoogle Scholar
  20. 20.
    S. Adhikari, D. Sarkar, G. Madras, Hierarchical design of CuS architectures for visible light photocatalysis of 4–Chlorophenol. ACS Omega. CrossRefGoogle Scholar
  21. 21.
    Z. Cheng, S. Wang, Q. Wang, B. Geng, A facile solution chemical route to self-assembly of CuS ball-flowers and their application as an efficient photocatalyst. CrystEngComm 12, 144–149 (2010). CrossRefGoogle Scholar
  22. 22.
    X. Meng, G. Tian, Y. Chen et al., Hierarchical CuS hollow nanospheres and their structure-enhanced visible light photocatalytic properties. CrystEngComm 15, 5144–5149 (2013). CrossRefGoogle Scholar
  23. 23.
    B. Srinivas, B.G. Kumar, K. Muralidharan, Stabilizer free copper sulphide nanostructures for rapid photocatalytic decomposition of rhodamine B. J. Mol. Catal. A Chem. 410, 8–18 (2015). CrossRefGoogle Scholar
  24. 24.
    M. Saranya, C. Santhosh, R. Ramachandran et al., Hydrothermal growth of CuS nanostructures and its photocatalytic properties. Powder Technol. 252, 25–32 (2014). CrossRefGoogle Scholar
  25. 25.
    S. Zinatloo-Ajabshir, S. Mortazavi-Derazkola, M. Salavati-Niasari, Preparation, characterization and photocatalytic degradation of methyl violet pollutant of holmium oxide nanostructures prepared through a facile precipitation method. J. Mol. Liq. 231, 306–313 (2017). CrossRefGoogle Scholar
  26. 26.
    S. Zinatloo-Ajabshir, M. Salavati-Niasari, Photo-catalytic degradation of erythrosine and eriochrome black T dyes using Nd2Zr2O7nanostructures prepared by a modified Pechini approach. Sep. Purif. Technol. 179, 77–85 (2017). CrossRefGoogle Scholar
  27. 27.
    R. Monsef, M. Ghiyasiyan-Arani, M. Salavati-Niasari, Application of ultrasound-aided method for the synthesis of NdVO4nano-photocatalyst and investigation of eliminate dye in contaminant water. Ultrason. Sonochem. 42, 201–211 (2018). CrossRefGoogle Scholar
  28. 28.
    S. Zinatloo-Ajabshir, Z. Salehi, M. Salavati-Niasari, Green synthesis of Dy2Ce2O7ceramic nanostructures using juice of Punica granatum and their efficient application as photocatalytic degradation of organic contaminants under visible light. Ceram. Int. 44, 3873–3883 (2018). CrossRefGoogle Scholar
  29. 29.
    F. Beshkar, S. Zinatloo-Ajabshir, S. Bagheri, M. Salavati-Niasari, Novel preparation of highly photocatalytically active copper chromite nanostructured material via a simple hydrothermal route. PLoS ONE 12, 17–18 (2017). CrossRefGoogle Scholar
  30. 30.
    S. Zinatloo-Ajabshir, Z. Salehi, M. Salavati-Niasari, Preparation, characterization and photocatalytic properties of Pr2Ce2O7 nanostructures via a facile procedure. RSC Adv. 6, 107785–107792 (2016). CrossRefGoogle Scholar
  31. 31.
    M. Ahmad, M.A. Rafiq, Z. Imran et al., Charge conduction and relaxation in MoS2 nanoflakes synthesized by simple solid state reaction. J. Appl. Phys. 114(4), 043710 (2013). CrossRefGoogle Scholar
  32. 32.
    M.F. Afsar, M.A. Rafiq, A.I.Y. Tok, Two-dimensional SnS nanoflakes: synthesis and application to acetone and alcohol sensors. RSC Adv. 7, 21556–21566 (2017). CrossRefGoogle Scholar
  33. 33.
    M.F. Afsar, A. Jamil, M.A. Rafiq, Ferroelectric, dielectric and electrical behavior of two-dimensional lead sulphide nanosheets. Adv. Nat. Sci. Nanosci. Nanotechnol. 8(4), 045010 (2017). CrossRefGoogle Scholar
  34. 34.
    A.M. Freeda, R.N. Madhav, Synthesis and characterization of nano-structured materials CuS (Covellite) for their applications. Nanotechnol. Nanosci. 1, 976–7630 (2010)Google Scholar
  35. 35.
    P.V. Quintana-ramirez, M.C. Arenas-arrocena, J. Santos-cruz, Growth evolution and phase transition from chalcocite to digenite in nanocrystalline copper sulfide: morphological, optical and electrical properties additional figures grain size (nm). Beilstein J. Nanotechnol. 5, 2–5 (2011). CrossRefGoogle Scholar
  36. 36.
    A.E. Raevskaya, A.L. Stroyuk, S.Y. Kuchmii, A.I. Kryukov, Catalytic activity of CuS nanoparticles in hydrosulfide ions air oxidation. J. Mol. Catal. A Chem. 212, 259–265 (2004). CrossRefGoogle Scholar
  37. 37.
    P.S. Khiew, S. Radiman, N.M. Huang, M.S. Ahamd, Synthesis and characterization of copper sulfide nanoparticles in hexagonal phase lyotropic liquid crystal. J. Cryst. Growth 268, 227–237 (2004). CrossRefGoogle Scholar
  38. 38.
    F.A. Sabah, N.M. Ahmed, Z. Hassan, H.S. Rasheed, CuS P-type thin film characteristics for different copper to sulphur molar ratios for light emitting diode application. J. Sci. Res. Dev. 2, 95–99 (2015)Google Scholar
  39. 39.
    S.K. Nath, P.K. Kalita (2017) Effect of capping agents on the optical properties of synthesized CuS nanostructures. In: Materials Today: Proceedings. Elsevier, pp 3972–3978Google Scholar
  40. 40.
    S.K. Nath, P.K. Kalita (2017) Effect of capping agents on the optical properties of synthesized CuS nanostructures. In: Materials Today: Proceedings. pp 3972–3978CrossRefGoogle Scholar
  41. 41.
    R.S. Christy, J. Thampi, T. Kumaran, Phase transition in CuS nanoparticles. J. Non-Oxide Glas. 6, 13–22 (2014)Google Scholar
  42. 42.
    X. Chen, Z. Wu, D. Liu, Z. Gao, Preparation of ZnO photocatalyst for the efficient and rapid photocatalytic degradation of azo dyes. Nanoscale Res. Lett. 12(1), 143 (2017). CrossRefGoogle Scholar
  43. 43.
    K. Mahajan, V.P. Patil, S.H. Sonawane, S.H. Sonawane G, Ultrasonic, photocatalytic and sonophotocatalytic degradation of Basic Red-2 by using Nb2O5 nano catalyst. AIMS Biophys. 3, 415–430 (2016). CrossRefGoogle Scholar
  44. 44.
    N.G. Tan, J.A. Field, G. Lettinga, Reduction of the azo dye mordant orange 1 by exposure to granules.pdf. Bioresour. Technol. 67(1), 35–42 (1999)CrossRefGoogle Scholar
  45. 45.
    Z. Li, L. Mi, W. Chen et al., Three-dimensional CuS hierarchical architectures as recyclable catalysts for dye decolorization. CrystEngComm 14, 3965 (2012). CrossRefGoogle Scholar
  46. 46.
    S.S. Batool, S. Hassan, Z. Imran et al., The enhancement in photocatalytic activity of bismuth modified silica and bismuth silicate nanofibers. Catal. Commun. 49, 39–42 (2014). CrossRefGoogle Scholar
  47. 47.
    P.V. Nidheesh, R. Gandhimathi, S.T. Ramesh, Degradation of dyes from aqueous solution by Fenton processes: a review. Environ. Sci. Pollut. Res. 20, 2099–2132 (2013)CrossRefGoogle Scholar
  48. 48.
    A. Charanpahari, S.S. Umare, R. Sasikala, Visible light active N doped GeO2 for the photodegradation of both anionic and cationic dyes. Catal. Commun. 40, 9–12 (2013). CrossRefGoogle Scholar
  49. 49.
    U.T.D. Thuy, N.Q. Liem, C.M.A. Parlett et al., Synthesis of CuS and CuS/ZnS core/shell nanocrystals for photocatalytic degradation of dyes under visible light. Catal. Commun. 44, 62–67 (2014). CrossRefGoogle Scholar
  50. 50.
    H. Zhou, Y. Qu, T. Zeid, X. Duan, Towards highly efficient photocatalysts using semiconductor nanoarchitectures. Energy Environ. Sci. 5, 6732 (2012). CrossRefGoogle Scholar
  51. 51.
    K. Sahel, L. Elsellami, I. Mirali et al., Hydrogen peroxide and photocatalysis. Appl. Catal. B Environ. 188, 106–112 (2016). CrossRefGoogle Scholar
  52. 52.
    D.-H. Tseng, L.-C. Juang, H.-H. Huang, Effect of oxygen and hydrogen peroxide on the photocatalytic degradation of monochlorobenzene in aqueous suspension. Int. J. Photoenergy 2012, 1–9 (2012). CrossRefGoogle Scholar
  53. 53.
    S. Rahnamaeiyan, S. Khademolhoseini, Preparation and characterization of cadmium titanate nanoparticles via novel sol–gel method and its photocatalyst application. J. Mater. Sci. Mater. Electron. 27, 6043–6047 (2016). CrossRefGoogle Scholar
  54. 54.
    U.G. Akpan, B.H. Hameed, Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review. J. Hazard. Mater. 170, 520–529 (2009). CrossRefGoogle Scholar
  55. 55.
    L. Andronic, L. Isac, A. Duta, Photochemical synthesis of copper sulphide/titanium oxide photocatalyst. J. Photochem. Photobiol. A Chem. 221, 30–37 (2011). CrossRefGoogle Scholar
  56. 56.
    L.D. Sánchez, S.F.M. Taxt-Lamolle, E.O. Hole et al., TiO2 suspension exposed to H2O2 in ambient light or darkness: degradation of methylene blue and EPR evidence for radical oxygen species. Appl. Catal. B Environ. 142–143, 662–667 (2013). CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics and Applied MathematicsPakistan Institute of Engineering and Applied SciencesNilore IslamabadPakistan
  2. 2.Micro and Nano Devices Group, Department of Metallurgy and Materials EngineeringPakistan Institute of Engineering and Applied SciencesNilore IslamabadPakistan
  3. 3.Department of Chemical EngineeringPakistan Institute of Engineering and Applied SciencesNilore IslamabadPakistan

Personalised recommendations