Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 22, pp 19155–19163 | Cite as

The structural, ferroelectric and optical properties of (Gd, Cr) co-substituted BiFeO3 thin films

  • Yanchun Xie
  • Xiaohang Wu
  • Yueli ZhangEmail author


Polycrystalline BiFeO3 (BFO) and Bi0.9Gd0.1Fe1−xCrxO3 (x = 0, 0.025, 0.05, 0.075, 0.10) multiferroic thin films were fabricated on quartz and Pt(111)/Ti/SiO2/Si(100) substrates using a sol–gel method. The effects of (Gd, Cr) co-doping on the microstructural, electrical and optical properties of BFO were studied. X-ray diffraction and micro-Raman measurements demonstrated that the phases of all films were a rhombohedral perovskite structure. The merging of (110) and (104) diffraction peaks demonstrated a structural transition in the Bi0.9Gd0.1Fe1−xCrxO3 thin films. The field emission scanning electron microscopy (FESEM) patterns exhibited that the grain sizes were decreased and the surface textures got denser and glossier with the increasing Cr content. The Bi0.9Gd0.1Fe0.95Cr0.05O3 showed a more uniform grain size distribution and denser surface. The leakage current densities and electrical polarizations of (Gd, Cr) co-doped BFO were improved. A minimum leakage current density (5.32 × 10−9 A/cm2) was obtained in Bi0.9Gd0.1Fe0.95Cr0.05O3 thin films at the electric field of 300 kV/cm, which decreased by four and five orders of magnitude compared to the BGFO thin film (4.17 × 10−5 A/cm2) and BFO thin film (6.5 × 10−4 A/cm2), respectively. And larger polarizations were observed in Bi0.9Gd0.1Fe0.95Cr0.05O3 thin film. Moreover, the leakage current mechanisms of all films have been studied. The optical band gaps (Eg) of Bi0.9Gd0.1Fe1−xCrxO3 thin films were blue-shift with the increasing of x value, which suggested a promising applications in the field of photocatalysis and power electronic devices.



This work is supported by the National Natural Science Foundation of China under Grant No. 61172027, Guangdong Natural Science Foundation under Grant No. 2014A030311049 and the Science and Technology Planning Project of Guangdong Province (2017A010103035).


  1. 1.
    H. Béa, M. Gajek, M. Bibes, A. Barthélémy, J. Phys. 20, 434221 (2008)Google Scholar
  2. 2.
    G. Catalan, J.F. Scott, Adv. Mater. 21, 2463–2485 (2009)CrossRefGoogle Scholar
  3. 3.
    T.J. Park, G.C. Papaefthymiou, A.J. Viescas, A.R. Moodenbaugh, S.S. Wong, Nano Lett. 7, 766 (2007)CrossRefGoogle Scholar
  4. 4.
    N.A. Spaldin, S.-W. Cheong, R. Ramesh, Phys. Today 63, 38–43 (2010)CrossRefGoogle Scholar
  5. 5.
    J.S. Park, Y.J. Yoo, J.S. Hwang, J.H. Kang, B.W. Lee, Y.P. Lee, J. Appl. Phys. 115, 013904 (2014)CrossRefGoogle Scholar
  6. 6.
    C. Gao, F. Lv, P. Zhang, C. Zhang, S. Zhang, C. Dong, Y. Gou, C. Jiang, D. Xue, J. Alloys Compd. 649, 694–698 (2015)CrossRefGoogle Scholar
  7. 7.
    S. Layek, H.C. Verma, A. Garg, J. Alloys Compd. 651, 294–301 (2015)CrossRefGoogle Scholar
  8. 8.
    A.Z. Simões, A.H.M. Gonzalez, L.S. Cavalcante, C.S. Riccardi, E. Longo, J.A. Varela, J. Appl. Phys. 101, 074108 (2007)CrossRefGoogle Scholar
  9. 9.
    J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh, Science 299, 1719–1722 (2003)CrossRefGoogle Scholar
  10. 10.
    S.-T. Zhang, Y. Zhang, M.-H. Lu, C.-L. Du, Y.-F. Chen, Z.-G. Liu, Y.-Y. Zhu, N.-B. Ming, X.Q. Pan, Appl. Phys. Lett. 88, 162901 (2006)CrossRefGoogle Scholar
  11. 11.
    C. Yang, J.-S. Jiang, F.-Z. Qian, D.-M. Jiang, C.-M. Wang, W.-G. Zhang, J. Alloys Compd. 507, 29–32 (2010)CrossRefGoogle Scholar
  12. 12.
    F. Lin, Q. Yu, L. Deng, Z. Zhang, X. He, A. Liu, W. Shi, J. Mater. Sci. 52, 7118–7129 (2017)CrossRefGoogle Scholar
  13. 13.
    S. Godara, N. Sinha, B. Kumar, Mater. Lett. 136, 441–444 (2014)CrossRefGoogle Scholar
  14. 14.
    D.H. Kuang, P. Tang, S.H. Yang, Y.L. Zhang, J. Sol Gel Sci. Technol. 73, 410–416 (2014)CrossRefGoogle Scholar
  15. 15.
    Q. Xu, Y. Sheng, M. He, X. Qiu, J. Du, J. Appl. Phys. 117, 17D911 (2015)CrossRefGoogle Scholar
  16. 16.
    X. Zhai, H. Deng, W. Zhou, P. Yang, J. Chu, J. Phys. D 48, 385002 (2015)CrossRefGoogle Scholar
  17. 17.
    M.K. Singh, H.M. Jang, S. Ryu, M.-H. Jo, Appl. Phys. Lett. 88, 042907 (2006)CrossRefGoogle Scholar
  18. 18.
    X. Xue, G. Tan, W. Liu, H. Ren, Mater. Chem. Phys. 146, 183–191 (2014)CrossRefGoogle Scholar
  19. 19.
    M. Kumar, P.C. Sati, S. Chhoker, J. Mater. Sci. 25, 5366–5374 (2014)Google Scholar
  20. 20.
    Reetu, A. Agarwal, S. Sanghi, Ashima, N. Ahlawat, Monica, J. Appl. Phys. 111, 113917 (2012)CrossRefGoogle Scholar
  21. 21.
    L. Yin, W. Liu, G. Tan, H. Ren, J. Supercond. Nov. Magn. 27, 2765–2772 (2014)CrossRefGoogle Scholar
  22. 22.
    G. Dong, G. Tan, Y. Luo, W. Liu, A. Xia, H. Ren, Surf. Sci. 305, 55–61 (2014)CrossRefGoogle Scholar
  23. 23.
    T. Durga Rao, S. Asthana, J. Appl. Phys. 116, 164102 (2014)CrossRefGoogle Scholar
  24. 24.
    X. Wen, Z. Chen, E. Liu, X. Lin, C. Chen, J. Alloys Compd. 678, 511–517 (2016)CrossRefGoogle Scholar
  25. 25.
    W. Mao, X. Wang, L. Chu, Y. Zhu, Q. Wang, J. Zhang, J. Yang, X. Li, W. Huang, Phys. Chem. Chem. Phys. 18, 6399–6405 (2016)CrossRefGoogle Scholar
  26. 26.
    Z. Chen, L. He, F. Zhang, J. Jiang, J. Meng, B. Zhao, A. Jiang, J. Appl. Phys. 113, 184106 (2013)CrossRefGoogle Scholar
  27. 27.
    H. Yang, H.M. Luo, H. Wang, I.O. Usov, N.A. Suvorova, M. Jain, D.M. Feldmann, P.C. Dowden, R.F. DePaula, Q.X. Jia, Appl. Phys. Lett. 92, 102113 (2008)CrossRefGoogle Scholar
  28. 28.
    W. Cai, C.L. Fu, R.L. Gao, W.H. Jiang, X.L. Deng, G. Chen, Mater. Sci. Forum 815, 135–140 (2015)CrossRefGoogle Scholar
  29. 29.
    W. Cai, C. Fu, R. Gao, W. Jiang, X. Deng, G. Chen, J. Alloys Compd. 617, 240–246 (2014)CrossRefGoogle Scholar
  30. 30.
    K.-X. Jin, B.-C. Luo, S.-G. Zhao, J.-Y. Wang, C.-L. Chen, Chin. Phys. Lett. 28, 087301 (2011)CrossRefGoogle Scholar
  31. 31.
    T. Choi, S. Lee, Y.J. Choi, V. Kiryukhin, S.W. Cheong, Science 324, 63–66 (2009)CrossRefGoogle Scholar
  32. 32.
    R.W.I. de Boer, A.F. Morpurgo, Phys. Rev. B 72, 073207 (2005)CrossRefGoogle Scholar
  33. 33.
    A.Q. Jiang, C. Wang, K.J. Jin, X.B. Liu, J.F. Scott, C.S. Hwang, T.A. Tang, H.B. Lu, G.Z. Yang, Adv. Mater. 23, 1277–1281 (2011)CrossRefGoogle Scholar
  34. 34.
    D.S. Shang, Q. Wang, L.D. Chen, R. Dong, X.M. Li, W.Q. Zhang, Phys. Rev. B 73, 245427 (2006)CrossRefGoogle Scholar
  35. 35.
    S.Y. Wang, W.F. Liu, J. Gao, X. Qiu, Y. Feng, X.G. Hou, D.S. Yu, D.J. Li, J. Appl. Phys. 112, 034110 (2012)CrossRefGoogle Scholar
  36. 36.
    Y. Yang, W. Xu, X. Xu, Y. Wang, G. Yuan, Y. Wang, Z. Liu, J. Appl. Phys. 119, 044102 (2016)CrossRefGoogle Scholar
  37. 37.
    S. Iakovlev, C.H. Solterbeck, M. Kuhnke, M. Es-Souni, J. Appl. Phys. 97, 094901 (2005)CrossRefGoogle Scholar
  38. 38.
    A.Z. Simões, L.S. Cavalcante, F. Moura, E. Longo, J.A. Varela, J. Alloys Compd. 509, 5326–5335 (2011)CrossRefGoogle Scholar
  39. 39.
    G.W. Pabst, L.W. Martin, Y.-H. Chu, R. Ramesh, Appl. Phys. Lett. 90, 072902 (2007)CrossRefGoogle Scholar
  40. 40.
    W.W. Li, J.J. Zhu, J.D. Wu, J. Gan, Z.G. Hu, M. Zhu, J.H. Chu, Appl. Phys. Lett. 97, 1719 (2010)Google Scholar
  41. 41.
    H.-M. Xu, H.-C. Wang, Y. Shen, Y.-H. Lin, C.-W. Nan, J. Appl. Phys. 116, 174307 (2014)CrossRefGoogle Scholar
  42. 42.
    P. Dongmo, Y. Zhong, P. Attia, C. Bomberger, R. Cheaito, J.F. Ihlefeld, P.E. Hopkins, J. Zide, J. Appl. Phys. 112, 093710 (2012)CrossRefGoogle Scholar
  43. 43.
    T.S. Moss, Proc. Phys. Soc. 67, 775–782 (2002)CrossRefGoogle Scholar
  44. 44.
    N. Ding, H. Deng, P. Yang, J. Chu, Mater. Lett. 82, 71–73 (2012)CrossRefGoogle Scholar
  45. 45.
    S.J. Pearton, C.R. Abernathy, M.E. Overberg, G.T. Thaler, D.P. Norton, N. Theodoropoulou, A.F. Hebard, Y.D. Park, F. Ren, J. Kim, L.A. Boatner, J. Appl. Phys. 93, 1–13 (2003)CrossRefGoogle Scholar
  46. 46.
    G.-Q. Tan, Y.-Q. Zheng, H.-Y. Miao, H.-Y. Bo, A. Xia, Mater. Lett. 64, 657–660 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and EngineeringSun Yat-Sen UniversityGuangzhouChina

Personalised recommendations