Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 22, pp 19137–19146 | Cite as

Optimization of sulfurization time for properties of Cu2ZnSnS4 films and cells by sputtering method

  • Xin Xu
  • Shurong WangEmail author
  • Xun Ma
  • Shuai Yang
  • Yaobin Li
  • Zhen Tang


Cu2ZnSnS4 (CZTS) thin films have been fabricated by sputtering ZnS/Sn/CuS and following the sulfurization process. In order to study the optimal sulfurization process, the effects of sulfurization time on the quality of CZTS thin films and solar cells are investigated. The sulfurization process was carried out at 580 °C for 10, 20, 30, 40 and 50 min respectively with a ramp rate of 45 °C min−1 in details. The results show that sulfurization time of 30 min provides a favorable sulfurization environment to form kesterite CZTS thin films owing to the highest crystallinity, dense and smooth surface morphology with larger grains and the best optical–electrical properties. Finally, the CZTS solar cells are fabricated with the structure of SLG/Mo/CZTS/CdS/i-ZnO/ITO/Al, and the best power conversion efficiency of 5.41% was obtained with an open-circuit voltage of 599 mV, a short-circuit current density of 18.71 mA cm−2 and a fill factor of 44% under the annealing time for 30 min.



This work was supported by collaborate Innovation Center of Research and Development of Renewable Energy in the Southwest Area (Grant No. 05300205020516009) and the National Natural Science Foundation of China (Grant No. 61167003), and also by key project of National and International Scientific and Technological cooperation (Grant No. 2011DFA62380). The authors are thankful for Modern Analysis and Testing Center of Yunnan University providing the scanning electron micro-scopy and Raman spectrometer for all experimental results.


  1. 1.
    C.A. Wolden, J. Kurtin, J.B. Baxter, I. Repins, S.E. Shaheen, J.T. Torvik, A.A. Rockett, V.M. Fthenakis, E.S. Aydil, J. Vac. Sci. Technol. A 29, 030801 (2011)CrossRefGoogle Scholar
  2. 2.
    M. Woodhouse, A. Goodrich, R. Margolis, T.L. James, M. Lokanc, R. Eggert, IEEE J. Photovolt. 3, 833 (2013)CrossRefGoogle Scholar
  3. 3.
    G. Kavlak, J. McNerney, R.L. Jaffe, J.E. Trancik, Energy Environ. Sci. 8, 1651 (2015)CrossRefGoogle Scholar
  4. 4.
    S.E. Habas, H.A.S. Platt, D.S. Ginley, M.F.A.M.V. Hest, Chem. Rev. 110, 6571 (2010)CrossRefGoogle Scholar
  5. 5.
    M.P. Suryawanshi, G.L. Agawane, S.M. Bhosale, S.W. Shin, P.S. Patil, J.H. Kim, A.V. Moholkar, Mater. Technol. 28, 98 (2013)CrossRefGoogle Scholar
  6. 6.
    D. Aldakov, A. Lefrançois, P. Reiss, J. Mater. Chem. C 1, 3756 (2013)CrossRefGoogle Scholar
  7. 7.
    P.K. Sarswat, M. Snure, M.L. Free, A. Tiwari, Thin Solid Films 520, 1694 (2012)CrossRefGoogle Scholar
  8. 8.
    L. Bo, S. Cheng, Y. Lai, H. Zhou, J. Yu, Q. Zheng, Thin Solid Films 573, 117 (2014)CrossRefGoogle Scholar
  9. 9.
    H. Katagiri, K. Jimbo, W.S. Maw, K. Oishi, M. Yamazaki, H. Araki, A. Takeuchi, Thin Solid Films 517, 2455 (2009)CrossRefGoogle Scholar
  10. 10.
    F. Liu, J. Huang, K. Sun, C. Yan, Y. Shen, NPG Asia Mater. 9, e401 (2017)CrossRefGoogle Scholar
  11. 11.
    S.-Y. Lin, C. Hägglund, Y. Ren, J.S.J. Scragg, J.K. Larsen, C. Frisk, K. Rudisch, S. Englund, C. Platzer-Björkman, Sol. Energy Mater. Sol. Cells 149, 170 (2016)CrossRefGoogle Scholar
  12. 12.
    B. Shin, O. Gunawan, Y. Zhu, A. Nestor. S. Bojarczuk, J. Chey, S. Guha, Prog. Photovolt. Res. Appl. 21, 72 (2013)CrossRefGoogle Scholar
  13. 13.
    F. Biccari, R. Chierchia, M. Valentini, P. Mangiapane, E. Salza, C. Malerba, Energy Procedia 10, 187 (2011)CrossRefGoogle Scholar
  14. 14.
    J. Wang, S. Li, J. Cai, B. Shen, Y. Ren, Y. Ren, G. Qin, J. Alloys Compd. 552, 418 (2013)CrossRefGoogle Scholar
  15. 15.
    C. Yan, J. Chen, F. Liu, N. Song, H. Cui, B.K. Ng, J.A. Stride, X. Hao, Alloys Compd. 610, 486 (2014)CrossRefGoogle Scholar
  16. 16.
    Y.B.K. Kumar, P.U. Bhaskar, G.S. Babu, V.S. Raja, Phys. Status Solidi Appl. Mater. 207, 149 (2009)CrossRefGoogle Scholar
  17. 17.
    M. Jiang, Y. Li, R. Dhakal, X. Yan, J. Photon. Energy 1, 232 (2011)CrossRefGoogle Scholar
  18. 18.
    K. Kazuya Maeda, Y. Tanakan, H. Fukui, Uchiki, Sol. Energy Mater. Sol. Cells 95, 2855 (2011)CrossRefGoogle Scholar
  19. 19.
    S.A. Vanalakar, G.L. Agawane, S.W. Shin, M.P. Suryawanshi, K.V. Gurav, Alloys Compd. 619, 109 (2015)CrossRefGoogle Scholar
  20. 20.
    H. Chen, Q. Ye, X. He, J. Ding, Y. Zhang, J. Han, J. Liu, C. Liao, J. Mei, W. Lau, Green Chem. 16, 3841 (2014)CrossRefGoogle Scholar
  21. 21.
    J. Tao, K. Zhang, C. Zhang, L. Chen, H. Gao, Chem. Commun. 51, 10337 (2015)CrossRefGoogle Scholar
  22. 22.
    Y.H. Jo, B.C. Mohanty, Sol. Energy Mater. Sol. Cells 132, 136 (2015)CrossRefGoogle Scholar
  23. 23.
    A. Fairbrother, X. Fontane, Sol. Energy Mater. Sol. Cells 112, 97 (2013)CrossRefGoogle Scholar
  24. 24.
    K. Jimbo, R. Kimura, Thin Solid Films 515, 5997 (2007)CrossRefGoogle Scholar
  25. 25.
    S.M. Pawar, A.I. Inamdar, K.V. Gurav, Vacuum 104, 57 (2014)CrossRefGoogle Scholar
  26. 26.
    J.C. González, P.A. Fernandes, G.M. Ribeiro, Sol. Energy Mater. Sol. Cells 123, 58 (2014)CrossRefGoogle Scholar
  27. 27.
    S. Lopez-Marino, M. Placidi, A. Perez-Tomas, J. Llobet, V. Izquierdo-Roca, X. Fontane, J. Mater. Chem. A 29, 8338 (2013)CrossRefGoogle Scholar
  28. 28.
    Z.-S. Li, S.-R. Wang, Z. Jiang, M. Yang, Y.-L. Lu, S.-J. Liu, Q.-C. Zhao, R.-T. Hao, Physica B 502, 56 (2016)CrossRefGoogle Scholar
  29. 29.
    W. Jiang Zhi, L. Shurong, Z.Y. Min, L. Sijia, Lu Yilei, Z. Qichen, H. Ruiting, Mater. Sci. Semicond. Process. 57, 239 (2017)CrossRefGoogle Scholar
  30. 30.
    Z. Su, C. Yan, K. Sun, Z. Han, F. Liu, J. Liu, Y. Lai, J. Li, Y. Liu, Appl. Surf. Sci. 258, 7678 (2012)CrossRefGoogle Scholar
  31. 31.
    D. Tiwari, T.K. Chaudhuri, A. Ray, K.D. Tiwari, Thin Solid Films 551, 42 (2014)CrossRefGoogle Scholar
  32. 32.
    E. Tayfur Kucukomeroglu, C. Bacaksiz, Terzioglu, A. Varicli, Thin Solid Films 516, 2913 (2008)CrossRefGoogle Scholar
  33. 33.
    J. Tao, L. Chen, H. Cao, C. Zhang, J. Liu, J. Mater. Chem. A 4, 3798 (2016)CrossRefGoogle Scholar
  34. 34.
    X. Yu, A. Ren, F. Wang, C. Wang, J. Zhang, W. Wang, L. Wu, W. Li, G. Zeng, L. Feng, Int. J. Photoenergy 12, 976 (2014)Google Scholar
  35. 35.
    M.Y. Valakh, V.M. Dzhagan, I.S. Babichuk, X. Fontane, A. Perez-Rodriquez, S. Schorr, JETP Lett. 98, 255 (2013)CrossRefGoogle Scholar
  36. 36.
    T. Gürel, C. Sevik, Çaǧın, Tahir, Phys. Rev. B 84, 896 (2011)CrossRefGoogle Scholar
  37. 37.
    V.T. Tiong, J. Bell, H. Wang, Beilstein J. Nanotechnol. 5, 438 (2014)CrossRefGoogle Scholar
  38. 38.
    V.M. Dzhagan, A.P. Litvinchuk, M. Kruszynska, J. Kolny-Olesiak, M.Y. Valakh, D.R.T. Zahn, J. Phys. Chem. C 118, 27554 (2014)CrossRefGoogle Scholar
  39. 39.
    K. Maeda, K. Tanaka, Y. Nakano, Y. Fukui, H. Uchiki, J. Appl. Phys. 50, 05FB09 (2011)CrossRefGoogle Scholar
  40. 40.
    S. Chen, X.G. Gong, A. Walsh, S.H. Wei, Appl. Phys. Lett. 96, 021902 (2010)CrossRefGoogle Scholar
  41. 41.
    S. Chen, J.-H. Yang, X.G. Gong, A. Walsh, S.H. Wei, Phys. Rev. B 81, 1842 (2010)Google Scholar
  42. 42.
    J.J. Scragg, P.J. Dale, L.M. Peter, G. Zoppi, I. Forbes, Phys. Status Solidi B 245, 1772 (2008)CrossRefGoogle Scholar
  43. 43.
    G. Jie, J. Jiang, P. Yang, P. Cheng, Z. Huang, S. Zuo, Sol. Energy Mater. Sol. Cells 125, 20 (2014)CrossRefGoogle Scholar
  44. 44.
    E.M. Mkawi, K. Ibrahim, M.K.M. Ali, M.A. Farrukh, A.S. Mohamed, Sol. Energy Mater. Sol. Cells 130, 91 (2014)CrossRefGoogle Scholar
  45. 45.
    J.J. Scragg, T. Kubart, J.T. .Watjen, T. Ericson, M.K. Linnarsson, C. Platzer-Bjorkman, Chem. Mater. 25, 3162 (2013)CrossRefGoogle Scholar
  46. 46.
    J.P. Leitao, N.M. Santos, P.A. Fernandes, P.M.P. Salome, A.F. Cunha, J.C. Gonzalez, F.M. Matinaga, Thin Solid Films 519, 7390 (2011)CrossRefGoogle Scholar
  47. 47.
    S.W. Shin, S.M. Pawar, C.Y. Park, J.H. Yun, J.H. Moon, J.H. Kim, J.Y. Lee, Sol. Energy Mater. Sol. Cells. 95, 3202 (2011)CrossRefGoogle Scholar
  48. 48.
    C. Yang, M. Qin, Y. Wang, D. Wan, F. Huang, J. Lin, Sci. Rep. 3, 1286 (2013)CrossRefGoogle Scholar
  49. 49.
    S.C. Riha, B.A. Parkinson, A.L. Prieto, Am. Chem. Soc. 131, 12054 (2009)CrossRefGoogle Scholar
  50. 50.
    J. Llanos, A. Buljan, C. Mujica, R. Ramı´rez, J. Alloys Compd. 234, 40 (1996)CrossRefGoogle Scholar
  51. 51.
    J. Ge, P. Koirala, C.R. Grice, P.J. Roland, Y. Yu, X. Tan, R.J. Ellingson, R.W. Collins, Y. Yan, Adv. Energy Mater. 7, 1601803 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Xin Xu
    • 1
  • Shurong Wang
    • 1
    • 2
    Email author
  • Xun Ma
    • 1
  • Shuai Yang
    • 1
  • Yaobin Li
    • 1
  • Zhen Tang
    • 1
  1. 1.Key Laboratory of Rural Energy Engineering in Yunnan ProvinceYunnan Normal UniversityKunmingPeople’s Republic of China
  2. 2.Yunnan Key Lab of Opto-Electronic Information TechnologyYunnan Normal UniversityKunmingPeople’s Republic of China

Personalised recommendations