Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 22, pp 19078–19085 | Cite as

Enhancement in supercapacitive performances of polyaniline nanofiber electrodes using surface-expanded graphite substrate

  • Haihan ZhouEmail author
  • Wenyu Zhang
  • Xiaomin Zhi


A facile surface-treated method is developed to fabricate surface-expanded graphite foil (SE-GF), which serves as substrate for the electrochemical growth of polyaniline (PANI), to enhance the supercapacitive performances of obtained PANI electrodes. We also compare the electrochemical properties of electro polymerized PANI with different dopants. Comparing with H2SO4 doped PANI electrodes, HClO4 doped PANI electrodes show enhanced electrochemical capacitive properties due to the formed loose morphology of nanofibers. More importantly, the supercapacitive performances of PANI nanofibers grown on SE-GF substrate are remarkably improved in comparison to those grown on GF substrate. This is caused by the optimal electron transfer pathways constructed at the interface of SE-GF substrate and PANI films. The resulting SE-GF/PANI electrodes exhibit superior electrochemical properties such as high specific capacitance (422.1 mF cm−2 at 0.5 mA cm−2), good rate performance, and remarkable cycling stability (94.1% of capacitance retention for 5000 cycles). Such characteristics offer great promise in high performance supercapacitor applications. This study demonstrates the importance of electron transfer pathways at the interface of substrate/current collector and electroactive material for electrochemical performances of electrodes.



This work was supported by the National Natural Science Foundation of China (21601113), Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (2017112), China Postdoctoral Science Foundation (2015M571283), and the Fund for Shanxi “1331 Project” Key Innovative Research Team.


  1. 1.
    X.Y. Liu, K.X. Wang, J.S. Chen, Energy Storage Mater. 3, 1–17 (2016)CrossRefGoogle Scholar
  2. 2.
    P. Ge, H.S. Hou, C.E. Banks, C.W. Foster, S.J. Li, Y. Zhang, J.Y. He, C.Y. Zhang, X.B. Ji, Energy Storage Mater. 12, 310–323 (2018)CrossRefGoogle Scholar
  3. 3.
    S.G. Mohamed, I. Hussain, J.J. Shim, Nanoscale 10, 6620–6628 (2018)CrossRefGoogle Scholar
  4. 4.
    T. Liu, L.Y. Zhang, W. You, J.G. Yu, Small 14, 1702407 (2018)CrossRefGoogle Scholar
  5. 5.
    N. Arsalani, S. Mashkouri, M.G. Hosseini, A. Ramazani, H. Mostafavi, J. Mater. Sci.: Mater. Electron. 29, 6692–6701 (2018)Google Scholar
  6. 6.
    S. Mondal, U. Rana, S. Malik, J. Phys. Chem. C 121, 7573–7583 (2017)CrossRefGoogle Scholar
  7. 7.
    X.H. Wang, A.Y. Mehandzhiyski, B. Arstad, K.L. Van Aken, T.S. Mathis, A. Gallegos, Z.Q. Tian, D.D. Ren, E. Sheridan, B.A. Grimes, D.E. Jiang, J.Z. Wu, Y. Gogotsi, D. Chen, J. Am. Chem. Soc. 139, 18681–18687 (2017)CrossRefGoogle Scholar
  8. 8.
    X. Chang, L. Zang, S. Liu, M. Wang, H. Guo, C. Wang, Y. Wang, J. Mater. Chem. A 6, 9109–9115 (2018)CrossRefGoogle Scholar
  9. 9.
    S. Mondal, U. Rana, S. Malik, Chem. Commun. 51, 12365–12368 (2015)CrossRefGoogle Scholar
  10. 10.
    S. Sahoo, P. Pazhamalai, K. Krishnamoorthy, S.-J. Kim, Electrochim. Acta 268, 403–410 (2018)CrossRefGoogle Scholar
  11. 11.
    Y. Zhang, H. Chen, C. Guan, Y. Wu, C. Yang, Z. Shen, Q. Zou, ACS Appl. Mater. Interfaces 10, 18440–18444 (2018)CrossRefGoogle Scholar
  12. 12.
    Y. Liu, X. Cao, D. Jiang, D. Jia, J. Liu, J. Mater. Chem. A 6, 10474–10483 (2018)CrossRefGoogle Scholar
  13. 13.
    S. Nagarani, G. Sasikala, K. Satheesh, M. Yuvaraj, R. Jayavel, J. Mater. Sci.: Mater. Electron. 29, 11738–11748 (2018)Google Scholar
  14. 14.
    H.H. Zhou, H.J. Zhai, G.Y. Han, J. Power Sources 323, 125–133 (2016)CrossRefGoogle Scholar
  15. 15.
    J. Zhou, L. Bao, S.J. Wu, W. Yang, H. Wang, J. Mater. Sci.: Mater. Electron. 29, 12340–12350 (2018)Google Scholar
  16. 16.
    F.Y. Ke, Y. Liu, H.Y. Xu, Y. Ma, S.Y. Guang, F.Y. Zhang, N.B. Lin, M.D. Ye, Y.H. Lin, X.Y. Liu, Compos. Sci. Technol. 142, 286–293 (2017)CrossRefGoogle Scholar
  17. 17.
    A. Rose, K. Guru Prasad, T. Sakthivel, V. Gunasekaran, T. Maiyalagan, T. Vijayakumar, Electrochemical analysis of graphene oxide/polyaniline/polyvinyl alcohol composite nanofibers for supercapacitor applications. Appl. Surf. Sci. 449, 551–557 (2018)CrossRefGoogle Scholar
  18. 18.
    U. Rana, S. Malik, Chem. Commun. 48, 10862–10864 (2012)CrossRefGoogle Scholar
  19. 19.
    S. Devaraj, P.V. Vardhan, J. Solid State Electrochem. 21, 1121–1127 (2017)CrossRefGoogle Scholar
  20. 20.
    A. Eftekhari, L. Li, Y. Yang, J. Power Sources 347, 86–107 (2017)CrossRefGoogle Scholar
  21. 21.
    L. Li, J.E. Morris, IEEE Trans. Compon. Packag. Manuf. A 20, 3–8 (1997)CrossRefGoogle Scholar
  22. 22.
    E.J. Abram, D.C. Sinclair, A.R. West, J. Electroceram. 7, 179–188 (2001)CrossRefGoogle Scholar
  23. 23.
    A. Sumboja, X. Wang, J. Yan, P.S. Lee, Electrochim. Acta 65, 190–195 (2012)CrossRefGoogle Scholar
  24. 24.
    Y.L. Cheng, L. Huang, X. Xiao, B. Yao, L.Y. Yuan, T.Q. Li, Z.M. Hu, B. Wang, J. Wan, J. Zhou, Nano Energy 15, 66–74 (2015)CrossRefGoogle Scholar
  25. 25.
    S. Akbulut, M. Yilmaz, S. Raina, S.H. Hsu, W.P. Kang, J. Appl. Electrochem. 47, 1035–1044 (2017)CrossRefGoogle Scholar
  26. 26.
    J.A. Arguello, A. Cerpa, M.H. Alanbari, J.C. Farinas, R. Moreno, Ceram. Int. 43, 3231–3237 (2017)CrossRefGoogle Scholar
  27. 27.
    Y.F. Zhao, Z. Zhang, Y.Q. Ren, W. Ran, X.Q. Chen, J.S. Wu, F.M. Gao, J. Power Sources 286, 1–9 (2015)CrossRefGoogle Scholar
  28. 28.
    J. Yan, T. Wei, Z.J. Fan, W.Z. Qian, M.L. Zhang, X.D. Shen, F. Wei, J. Power Sources 195, 3041–3045 (2010)CrossRefGoogle Scholar
  29. 29.
    D.J. Yang, W.J. Huang, X.Q. Qiu, H.M. Lou, Y. Qian, Appl. Surf. Sci. 426, 287–293 (2017)CrossRefGoogle Scholar
  30. 30.
    C. Pan, H.T. Gu, L. Dong, J. Power Sources 303, 175–181 (2016)CrossRefGoogle Scholar
  31. 31.
    P. Ge, H.S. Hou, X.Y. Cao, S.J. Li, G.G. Zhao, T.X. Guo, C. Wang, X.B. Ji, Adv. Sci. 5, 1800080 (2018)CrossRefGoogle Scholar
  32. 32.
    P. Ge, C.Y. Zhang, H.S. Hou, B.K. Wu, L. Zhou, S.J. Li, T.J. Wu, J.G. Hu, L.Q. Mai, X.B. Ji, Nano Energy 48, 617–629 (2018)CrossRefGoogle Scholar
  33. 33.
    D. Ghosh, S. Giri, A. Mandal, C.K. Das, Appl. Surf. Sci. 276, 120–128 (2013)CrossRefGoogle Scholar
  34. 34.
    W.L. Wu, D. Pan, Y.F. Li, G.H. Zhao, L.Y. Jing, S.L. Chen, Electrochim. Acta 152, 126–134 (2015)CrossRefGoogle Scholar
  35. 35.
    K.L. Wang, Y.H. Cao, Z.R. Gu, P. Ahrenkiel, J. Lee, Q.H. Fan, RSC Adv. 6, 26738–26744 (2016)CrossRefGoogle Scholar
  36. 36.
    R.R. Wang, Q. Wu, X.H. Zhang, Z.H. Yang, L.J. Gao, J.F. Ni, O.K.C. Tsui, J. Mater. Chem. A 4, 12602–12608 (2016)CrossRefGoogle Scholar
  37. 37.
    Q.Q. Zhou, Y.R. Li, L. Huang, C. Li, G.Q. Shi, J. Mater. Chem. A 2, 17489–17494 (2014)CrossRefGoogle Scholar
  38. 38.
    N. Hui, F.L. Chai, P.P. Lin, Z.L. Song, X.T. Sun, Y.N. Li, S.Y. Niu, X.L. Luo, Electrochim. Acta 199, 234–241 (2016)CrossRefGoogle Scholar
  39. 39.
    K. Chi, Z.Y. Zhang, J.B. Xi, Y.A. Huang, F. Xiao, S. Wang, Y.Q. Liu, ACS Appl. Mater. Interfaces 6, 16312–16319 (2014)CrossRefGoogle Scholar
  40. 40.
    F.C.R. Ramirez, P. Ramakrishnan, Z.P. Flores-Payag, S. Shanmugam, C.A. Binag, Synth. Met. 230, 65–72 (2017)CrossRefGoogle Scholar
  41. 41.
    X.F. Lu, X.Y. Chen, W. Zhou, Y.X. Tong, G.R. Li, ACS Appl. Mater. Interfaces 7, 14843–14850 (2015)CrossRefGoogle Scholar
  42. 42.
    D.T. Ge, L.L. Yang, L. Fan, C.F. Zhang, X. Xiao, Y. Gogotsi, S. Yang, Nano Energy 11, 568–578 (2015)CrossRefGoogle Scholar
  43. 43.
    J.Q. Chen, Z.B. Xia, H. Li, Q. Li, Y.J. Zhang, Electrochim. Acta 166, 174–182 (2015)CrossRefGoogle Scholar
  44. 44.
    C. Jin, H.T. Wang, Y.N. Liu, X.H. Kang, P. Liu, J.N. Zhang, L.N. Jin, S.W. Bian, Q. Zhu, Electrochim. Acta 270, 205–214 (2018)CrossRefGoogle Scholar
  45. 45.
    Y.R. Zhu, Z.B. Wu, M.J. Jing, H.S. Hou, Y.C. Yang, Y. Zhang, X.M. Yang, W.X. Song, X.N. Jia, X.B. Ji, J. Mater. Chem. A 3, 866–877 (2015)CrossRefGoogle Scholar
  46. 46.
    C. Liang, J.P. Bao, C.G. Li, H. Huang, C.L. Chen, Y. Lou, H.Y. Lu, H.B. Lin, Z. Shi, S.H. Feng, Microporous Mesoporous Mater. 251, 77–82 (2017)CrossRefGoogle Scholar
  47. 47.
    Z. Ling, A. Harvey, D. McAteer, I.J. Godwin, B. Szydlowska, A. Griffin, V. Vega-Mayoral, Y.C. Song, A. Seral-Ascaso, V. Nicolosi, J. Coleman, Adv. Energy Mater. 8, 1702364 (2018)CrossRefGoogle Scholar
  48. 48.
    Y.X. Zhong, X. Zhang, Y. He, H.F. Peng, G.K. Wang, G.Q. Xin, Adv. Funct. Mater. 1801998 (2018)Google Scholar
  49. 49.
    J.Y. Chen, H.Y. Wang, J. Deng, C.M. Xu, Y. Wang, J. Mater. Chem. A 6, 8986–8991 (2018)CrossRefGoogle Scholar
  50. 50.
    Y.M. Li, H.Q. Ye, J.H. Chen, N. Wang, R. Sun, C.P. Wong, J. Alloy. Compd. 737, 731–739 (2018)CrossRefGoogle Scholar
  51. 51.
    P. Ge, H.S. Hou, X.B. Ji, Z.D. Huang, S.M. Li, L.P. Huang, Mater. Chem. Phys. 203, 185–192 (2018)CrossRefGoogle Scholar
  52. 52.
    H.S. Hou, C.E. Banks, M.J. Jing, Y. Zhang, X.B. Ji, Adv. Mater. 27, 7861–7866 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Molecular Science, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of EducationShanxi UniversityTaiyuanChina

Personalised recommendations