Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 22, pp 19070–19077 | Cite as

Preparation and properties of La0.71Ca0.29Mn1−xCrxO3 polycrystalline composites

  • Kaikai Yan
  • Zhiyu Li
  • Di Li
  • Yule Li
  • Ning Yang
  • Qingming Chen
  • Hui ZhangEmail author


La0.71Ca0.29Mn1−xCrxO3 (x = 0, 0.01, 0.03, 0.05 and 0.10) polycrystalline ceramics were synthesized by sol–gel method with methanol as solvent. X-ray diffraction results assisted with Rietveld refinement analysis showed that all samples crystallized in the orthorhombic structure with Pnma space group. The Cr substitution modified not only the Mn–O bond length, but also the Mn–O–Mn bond angle. Scanning electron microscope (SEM) micrographs revealed that the samples had high density and dense grain boundary. Temperature dependence of resistivity (ρ–T) curves showed that all samples had metal–insulator transition (TMI) phenomenon. By the way, TMI decreased with the increase in Cr content. When the sample was applied with a magnetic field, the resistivity decreased and TMI shifted to the higher temperature region. The temperature coefficient of resistivity (TCR) of the sample reached the highest value of 38.9%·K−1 at x = 0.01, indicating that TCR can be subtly improved by slight substitution of Mn-site, thereby the colossal magneto-resistance materials have a huge application potential in bolometer/infrared detection.



This work was supported by the Training project of Kunming university of science and technology (No. KKSY201451080) and National Natural Science Foundation of China (No. 11564021).


  1. 1.
    S.O. Manjunatha, A. Rao, P.D. Babu, G.S. Okram, Studies on magneto-resistance, magnetization and thermoelectric power of Cr substituted La0.65Ca0.35Mn1–xCrxO3 (0 ≤ x ≤ 0.07) manganites. Physica B 475, 1–9 (2015)CrossRefGoogle Scholar
  2. 2.
    X.L. Xu, Y. Li, F.F. Hou, Q. Cheng, R.Z. SU, Effect of Co substitution on magnetic ground state in Sm0.5Ca0.5MnO3. J. Alloys Compd. 628, 89–96 (2015)CrossRefGoogle Scholar
  3. 3.
    M.H. Phan, S.C. Yu, Review of the magnetocaloric effect in manganite materials. J. Magn. Magn Mater. 308, 325–340 (2007)CrossRefGoogle Scholar
  4. 4.
    E.L. Nagaev, Colossal-magnetoresistance materials: manganites and conventional ferromagnetic semiconductors. Phys. Rep. 346, 387–581 (2001)CrossRefGoogle Scholar
  5. 5.
    S. Mathur, H. Shen, Structural and physical properties of La2/3Ca1/3MnO3 prepared via a modified sol-gel method. J. Sol-Gel Sci. Technol. 25, 147–157 (2002)CrossRefGoogle Scholar
  6. 6.
    K. Das, I. Das, Magnetic and magnetoresistive properties of half-metallic ferromagnetic and charge ordered modified ferromagnetic manganite nanoparticles. J. Appl. Phys. 121, 103904 (2017)CrossRefGoogle Scholar
  7. 7.
    L.W. Lei, Z.Y. Fu, J.Y. Zhang, H. Wang, K. Niihara, Low field magnetoresistance of La0.7Ca0.3MnO3ceramics fabricated by fast sintering process. J. Alloys Compd. 530, 164–168 (2012)CrossRefGoogle Scholar
  8. 8.
    F. Jin, H. Zhang, X.H. Chen, X. Liu, Q.M. Chen, Enhancement of temperature coefficient of resistance (TCR) and magneto-resistance (MR) in La1–xCaxMnO3:Ag0.2 polycrystalline composites. J. Sol-Gel Sci. Technol. 82, 193–200 (2017)CrossRefGoogle Scholar
  9. 9.
    G.H. Jonker, J.H. Van Santen, Ferromagnetic compounds of manganese with perovskite structure. J. Phys. 16, 337–349 (1950)Google Scholar
  10. 10.
    A.R. Jun Zang, H. Bishop, Röder, Double degeneracy and Jahn-Teller effects in colossal-magnetoresistance perovskites. Phys. Rev. B 53, R8840 (1996)CrossRefGoogle Scholar
  11. 11.
    A.J. Millis, P.B. Littlewood, B.I. Shraiman, Double exchange alone does not explain the resistivity of La1−xSrxMnO3. Phys. Rev. Lett. 74, 5144 (1995)CrossRefGoogle Scholar
  12. 12.
    A. Krichene, P.S. Solanki, S. Rayaprol, V. Ganesan, W. Boujelben, D.G. Kuberkar, B-site bismuth doping effect on structural, magnetic and magnetotransport properties of La0.5Ca0.5Mn1–xBixO3. Ceram. Int. 41, 2637–2647 (2015)CrossRefGoogle Scholar
  13. 13.
    G.W. Kim, S. Kumar, J. Chang, C.G. Lee, B.H. Koo, Magnetic and electrical properties of La0.7Ca0.3Mn0.95Co0.05O3 epitaxial layers by pulsed laser deposition. Ceram. Int. 38S, S443–S446 (2012)CrossRefGoogle Scholar
  14. 14.
    S. Mollah, I. Dhiman, A. Das, Structural and magnetic properties of La0.85Ca0.15Mn1–xCrxO3. Mater. Lett. 65, 922–925 (2011)CrossRefGoogle Scholar
  15. 15.
    N. Kumar, H. Kishan, A. Rao, V.P. Awana, Structural, electrical, magnetic, and thermal studies of Cr-doped La0.7Ca0.3Mn1–xCrxO3 (0 ≤ x ≤ 1) manganites. J. Appl. Phys. 107, 083905 (2010)CrossRefGoogle Scholar
  16. 16.
    J.C. Debnath, J. Wang, Magnetic and electrical response of Co-doped La0.7Ca0.3MnO3 manganites/insulator system. Physica B 504, 58–62 (2017)CrossRefGoogle Scholar
  17. 17.
    Y. Sun, X. Xu, Y. Zhang, Effects of Cr doping in La0.67Ca0.33MnO3: magnetization, resistivity, and thermopower. Phys. Rev. B 63, 054404 (2000)CrossRefGoogle Scholar
  18. 18.
    X. Chen, H. Zhang, F. Jin, X. Liu, Q. Chen, Fabrication of La(x)Nd0.67−xSr0.33MnO3 polycrystalline ceramics by sol-gel method. J. Sol-Gel Sci. Technol. 80, 168–173 (2016)CrossRefGoogle Scholar
  19. 19.
    X. Xiao, S.L. Yuan, Y.Q. Wang, G.M. Ren, J.H. Miao, G.Q. Yu, Z.M. Tian, L. Liu, L. Chen, S.Y. Yin, Comparison of the magnetic and electrical transport properties of La2/3Ca1/3Mn1−xCrxO3 and La2/3+xCa1/3−xMn1−xCrxO3 (x = 0 and 0.06). Solid State Commun. 141, 348–353 (2007)CrossRefGoogle Scholar
  20. 20.
    D.G. Kuberkar, R.R. Doshi, P.S. Solanki, U. Khachar, M. Vagadia, A. Ravalia, V. Ganesan, Grain morphology and size disorder effect on the transport and magnetotransport in Sol-Gel grown nanostructured manganites. Appl. Surf. Sci. 258, 9041–9046 (2012)CrossRefGoogle Scholar
  21. 21.
    S. Roy, I.S. Dubenko, A.Y. Ignatov, N. Ali, Study of the colossal magnetoresistance properties of the compound La1 – xSrxAyMn1–yO3 (A=Cr, Re). J. Phys. 12, 9465–9479 (2000)Google Scholar
  22. 22.
    N. Kumar, H. Kishan, A. Rao, V.P. Awana, Fe ion doping effect on electrical and magnetic properties of La0.7Ca0.3Mn1–xFexO3 (0 ≤ x ≤ 1). J. Alloys Compd. 502, 283–288 (2010)CrossRefGoogle Scholar
  23. 23.
    L.M. Wang, C.Y. Wang, C.C. Tseng, Correlation of the temperature coefficient of resistivity for doped manganites to the transition temperature, polaron binding energy, and magnetic order. Appl. Phys. Lett. 100, 232403 (2012)CrossRefGoogle Scholar
  24. 24.
    G. Venkataiah, V. Prasad, P. Venugopal Reddy, Influence of A-site cation mismatch on structural, magnetic and electrical properties of lanthanum manganites. J. Alloy Compd. 429, 1–9 (2007)CrossRefGoogle Scholar
  25. 25.
    X.W. Li, A. Gupta, G. Xiao, G.Q. Gong, Low-field magnetoresistive properties of polycrystalline and epitaxial perovskite manganite films. Appl. Phys. Lett. 71, 1124–1126 (1997)CrossRefGoogle Scholar
  26. 26.
    A. Gupta, G. Gong, G. Xiao, P. Duncombe, P. Lecoeur, P. Trouilloud, Y. Wang, V. Dravid, J. Sun, Grain-boundary effects on the magnetoresistance properties of perovskite manganite films. Phys. Rev. B 54, R15629–R15632 (1996)CrossRefGoogle Scholar
  27. 27.
    L.E. Hueso, J. Rivas, F. Rivadulla, M.A. López-Quintela, Magnetoresistance in manganite/alumina nanocrystalline composites. J. Appl. Phys. 89, 1746–1750 (2001)CrossRefGoogle Scholar
  28. 28.
    Q. Huang, Z.W. Li, J. Li, C.K. Ong, Effect of Fe doping on high field magnetoresistance and low field magnetoresistance at zero field in polycrystalline La0.7Sr0.3Mn1–xFexO3(x = 0-0.12) thin films. J. Appl. Phys. 89, 7410–7412 (2001)CrossRefGoogle Scholar
  29. 29.
    T. Sudyoadsuk, R. Suryanarayanan, P. Winotai, Effect of Cr and Fe substitutions on the magnetotransport properties of the charge-ordered manganite La0.4Ca0.6MnO3. J. Magn. Magn. Mater. 272, E1379–E1382 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Materials Science and EngineeringKunming University of Science and TechnologyKunmingPeople’s Republic of China

Personalised recommendations