Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 22, pp 19063–19069 | Cite as

Improved electrical properties of Co-doped 0.92NBT–0.04KBT–0.04BT lead-free ceramics

  • Huiling Guo
  • Yang Li
  • Yong Zhang
  • Huajun Sun
  • Xiaofang Liu
Article
  • 59 Downloads

Abstract

The (1 − 2x)NBT–xKBT–xBT ternary piezoelectric system has been extensively studied in recent years. However, its electrical performance is far inferior to lead-based counterparts, and could not meet the requirements for practical applications. In this contribution, the 0.92NBT–0.04KBT–0.04BT (abbreviated as NKBT4) ceramics were prepared by traditional solid-state method. The effects of doped cobalt content on the structure and electrical performance of NKBT4 ceramics were studied systematically. The content of Co2O3 affects the average grain size, maximum dielectric constant, piezoelectric properties and the ferroelectric responses of the ceramics. It was found that the introduction of cobalt did not affect the phase structure of the ceramics, but is beneficial for the improvement of the dielectric and piezoelectric properties. When x = 0.2, the piezoelectric coefficient (d33) is around 130 pC/N, which is greatly improved compared to pure NKBT4 ceramics. Besides, a relatively high dielectric constant (εr = 1150) was obtained at the same composition. This work paves a new way for the further development of high performance lead-free piezoelectric ceramics.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51372181, 51672198 and 51272191), Primary Research Plan of Shandong Province (Grant No. 2016CYJS07A03-2), Innovation and Development Project of Zibo City (2017CX01A022), Instruction & Development Project for National Funding Innovation Demonstration Zone of Shandong Province (2016-181-11, 2017-41-1, 2017-41-3, 2018ZCQZB01), and Central Guiding Local Science and Technology Development Special Funds (Grant No. 2060503).

References

  1. 1.
    Y. Zhang, W. Zhu, C.K. Jeong, H. Sun, G. Yang, W. Chen, Q. Wang, A microcube-based hybrid piezocomposite as a flexible energy generator. RSC Adv. 7, 32502–32507 (2017)CrossRefGoogle Scholar
  2. 2.
    Y. Zhang, C.K. Jeong, J. Wang, H. Sun, F. Li, G. Zhang, L.-Q. Chen, S. Zhang, W. Chen, Q. Wang, Flexible energy harvesting polymer composites based on biofibril-templated 3-dimensional interconnected piezoceramics. Nano Energy 50, 35–42 (2018)CrossRefGoogle Scholar
  3. 3.
    Y. Zhang, C.K. Jeong, T. Yang, H. Sun, L.-Q. Chen, S. Zhang, W. Chen, Q. Wang, Bioinspired elastic piezoelectric composites for high-performance mechanical energy harvesting. J. Mater. Chem. A 6, 14546–14552 (2018)CrossRefGoogle Scholar
  4. 4.
    S. Zhang, R. Xia, T.R. Shrout, Lead-free piezoelectric ceramics vs. PZT? J. Electroceram. 19, 251–257 (2007)CrossRefGoogle Scholar
  5. 5.
    B. Sahoo, P.K. Panda, Electronic Properties of lead-free (Ba0.95Ca0.05)(Ti0.92Sn0.08)O3 piezoceramic nanofibers by electrospinning. J. Electron. Mater. 44, 4563–4566 (2015)CrossRefGoogle Scholar
  6. 6.
    Y. Zhang, H. Sun, W. Chen, Influence of cobalt and sintering temperature on structure and electrical properties of BaZr0.05Ti0.95O3 ceramics. Ceram. Int. 41, 8520–8532 (2015)CrossRefGoogle Scholar
  7. 7.
    Y. Zhang, H.-J. Sun, W. Chen, Li-modified Ba0.99Ca0.01Zr0.02Ti0.98O3 lead-free ceramics with highly improved piezoelectricity. J. Alloys Compd. 694, 745–751 (2017)CrossRefGoogle Scholar
  8. 8.
    Y. Zhang, H. Sun, W. Chen, A brief review of Ba(Ti0.8Zr0.2)O3-(Ba0.7Ca0.3)TiO3 based lead-free piezoelectric ceramics: past, present and future perspectives. J. Phys. Chem. Solids 114, 207–219 (2018)CrossRefGoogle Scholar
  9. 9.
    H. Lidjici, B. Lagoun, H. Khemakhem, Dielectric and raman studies of 0.935(Bi0.5Na0.5TiO3)-0.065BaTiO3 lead free ceramics. Acta Phys. Pol. A 130, 1431–1434 (2016)CrossRefGoogle Scholar
  10. 10.
    T.R. Shrout, S.J. Zhang, Lead-free piezoelectric ceramics: alternatives for PZT? J. Electroceram. 19, 111–124 (2007)CrossRefGoogle Scholar
  11. 11.
    J. Suchanicz, K. Kluczewska, P. Czaja, A. Kania, K. Konieczny, B. Handke, M. Sokolowski, M.P. Trubitsyn, T.V. Kruzina, The influence of electric poling on structural, thermal, dielectric and ferroelectric properties of Na0.5Bi0.5TiO3 ceramics. Ceram. Int. 43, 17194–17201 (2017)CrossRefGoogle Scholar
  12. 12.
    T. Takenaka, K. Maruyama, K. Sakata, (Bi1/2Na1/2)TiO3-BaTiO3 system for lead-free piezoelectric ceramics. Jpn. J. Appl. Phys. 30, 2236–2239 (1991)CrossRefGoogle Scholar
  13. 13.
    Y. Li, W. Chen, Q. Xu, J. Zhou, X. Gu, Piezoelectric and ferroelectric properties of Na0.5Bi0.5TiO3–K0.5Bi0.5TiO3–BaTiO3 piezoelectric ceramics. Mater. Lett. 59, 1361–1364 (2005)CrossRefGoogle Scholar
  14. 14.
    W. Chen, Y. Li, Q. Xu, J. Zhou, Electromechanical properties and morphotropic phase boundary of Na0.5Bi0.5TiO3-K0.5Bi0.5TiO3-BaTiO3 lead-free piezoelectric ceramics. J. Electroceram. 15, 229–235 (2005)CrossRefGoogle Scholar
  15. 15.
    W.L. Li, W.P. Cao, D. Xu, W. Wang, W.D. Fei, Phase structure and piezoelectric properties of NBT-KBT-BT ceramics prepared by sol-gel flame synthetic approach. J. Alloys Compd. 613, 181–186 (2014)CrossRefGoogle Scholar
  16. 16.
    H.Y. Ma, X.M. Chen, J. Wang, K.T. Huo, H.L. Lian, P. Liu, Structure, dielectric and ferroelectric properties of 0.92Na0.5Bi0.5TiO3–0.06BaTiO3–0.02K0.5Na0.5NbO3 lead-free ceramics: effect of Co2O3 additive. Ceram. Int. 39, 3721–3729 (2013)CrossRefGoogle Scholar
  17. 17.
    H. Hu, M. Zhu, F. Xie, N. Lei, J. Chen, Y. Hou, H. Yan, Effect of Co2O3 additive on structure and electrical properties of 85(Bi1/2Na1/2)TiO3-12(Bi1/2 K1/2)TiO3-3BaTiO3 lead-free piezoceramics. J. Am. Ceram. Soc. 92, 2039–2045 (2009)CrossRefGoogle Scholar
  18. 18.
    H. Nagata, M. Yoshida, Y. Makiuchi, T. Takenaka, Large piezoelectric constant and high curie temperature of lead-free piezoelectric ceramic ternary system based on bismuth sodium titanate-bismuth potassium titanate-barium titanate near the morphotropic phase boundary. Jpn. J. Appl. Phys. Part 1 42, 7401–7403 (2003)CrossRefGoogle Scholar
  19. 19.
    W.P. Cao, W.L. Li, Y. Feng, D. Xu, W. Wang, Y.F. Hou, T.D. Zhang, W.D. Fei, Enhanced depolarization temperature in 0.90NBT–0.05KBT–0.05BT ceramics induced by BT nanowires. J. Phys. Chem. Solids 78, 41–45 (2015)CrossRefGoogle Scholar
  20. 20.
    Y. Li, Y. Zhang, H. Sun, X. Liu, H. Sui, D. Zhou, Q. Guo, Phase structure and electrical properties of lead-free (1–2x)NBT–xKBT–xBT ceramics. J. Mater. Sci. Mater. Electron. 29, 7851–7856 (2018)CrossRefGoogle Scholar
  21. 21.
    B. Cui, P. Yu, J. Tian, Z. Chang, Preparation and characterization of Co-doped BaTiO3 nanosized powders and ceramics. Mater. Sci. Eng. B 133, 205–208 (2006)CrossRefGoogle Scholar
  22. 22.
    H. Sun, Y. Zhang, X. Liu, Y. Liu, W. Chen, Effects of CuO additive on structure and electrical properties of low-temperature sintered Ba0.98Ca0.02Zr0.02Ti0.98O3 lead-free ceramics. Ceram. Int. 41, 555–565 (2014)CrossRefGoogle Scholar
  23. 23.
    M. Zhou, J. Zhang, L. Ji, Y. Wang, J. Wang, F. Yu, Phase transition and piezoelectric, ferromagnetic response of B-site (Co, Nb) modified BaTiO3 ceramics. Ceram. Int. 40, 853–857 (2014)CrossRefGoogle Scholar
  24. 24.
    Y. Hiruma, T. Watanabe, H. Nagata, T. Takenaka, Piezoelectric properties of (Bi1/2Na1/2)TiO3-based solid solution for lead-free high-power applications. Jpn. J. Appl. Phys. 47, 7659–7663 (2008)CrossRefGoogle Scholar
  25. 25.
    Q. Xu, D.-P. Huang, M. Chen, W. Chen, H.-X. Liu, B.-H. Kim, Effect of bismuth excess on ferroelectric and piezoelectric properties of a (Na0.5Bi0.5)TiO3–BaTiO3 composition near the morphotropic phase boundary. J. Alloys Compd. 471, 310–316 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Huiling Guo
    • 1
  • Yang Li
    • 1
  • Yong Zhang
    • 1
  • Huajun Sun
    • 1
    • 2
  • Xiaofang Liu
    • 3
  1. 1.State Key Laboratory of Silicate Materials for ArchitecturesWuhan University of TechnologyWuhanPeople’s Republic of China
  2. 2.Advanced Ceramics Institute of Zibo New & High-Tech Industrial Development ZoneZiboPeople’s Republic of China
  3. 3.School of Chemistry, Chemical Engineering and Life SciencesWuhan University of TechnologyWuhanPeople’s Republic of China

Personalised recommendations